ANÁLISE NUMÉRICA DE VIGAS DE CONCRETO ARMADO COM BARRAS DE GFRP: UMA REVISÃO SISTEMÁTICA DA LITERATURA
DOI:
https://doi.org/10.5216/reec.v20i2.78841Palavras-chave:
Compósitos poliméricos; Durabilidade, Método dos elementos finitos, Polímero reforçado com fibras de vidro, Revisão sistemáticaResumo
RESUMO: A utilização de barras de polímeros reforçados com fibras de vidro (GFRP -Glass Fiber Reinforced Polymer) como substitutas parciais ou totais das tradicionais barras de aço apresenta vantagens significativas para os elementos estruturais, como aumento da capacidade portante. No entanto, a escassez de pesquisas abrangentes sobre esse material e suas propriedades vem levando a desafios significativos na compreensão de seu potencial de uso e consequente disseminação na indústria da construção civil. A falta de investigações aprofundadas e a carência de métodos eficazes para simular o desempenho das barras de GFRP no concreto armado desencorajam sua adoção em construções. Nesse contexto, o presente artigo visa realizar uma revisão sistemática sobre simulações numéricas com o uso de barras de GFRP em vigas de concreto, destacando os métodos mais amplamente empregados nessas simulações. Os principais resultados mostram que as barras de GFRP aumentam significativamente a resistência à flexão das vigas de concreto, mas apresentam menor ductilidade devido ao comportamento frágil. O uso do método dos elementos finitos com diversos software se mostrou eficaz na previsão do comportamento estrutural. Observou-se também uma variação nos valores de módulo de elasticidade das barras, destacando a necessidade de padronização.
Downloads
Referências
AMERICAN CONCRETE INSTITUTE. Committee 440. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer FRP bars. Detroit, 2015.
ADAM, M. A.; SAID, M., MAHMOUD, A. A.; SHANOUR, A. S. Analytical and experimental flexural behavior of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, v. 84, p 354-366, 2015. https://doi.org/10.1016/j.conbuildmat.2015.03.057.
ALAM, M. S.; HUSSEIN, A. Finite element modelling of shear critical glass fibre-reinforced polymer (GFRP) reinforced concrete beams. International Journal of Modelling and Simulation, v. 41, n. 1, p. 11-23, 2021. https://doi.org/10.1080/02286203.2019.1655702.
______. Idealized tension stiffening model for finite element analysis of glass fibre reinforced polymer (GFRP) reinforced concrete members. Structures, v. 24, p. 351-356, 2020. https://doi.org/10.1016/j.istruc.2020.01.033.
ALMUSALLAM, T. H.; ELSANADEDY, H. M.; AL-SALLOUM, Y. A.; ALSAYED, S. H. Experimental and numerical investigation for the flexural strengthening of RC beams using near-surface mounted steel or GFRP bars. Construction and Building Materials, v. 40, p. 145-161, 2013. https://doi.org/10.1016/j.conbuildmat.2012.09.107.
ALMEIDA JÚNIOR, S. A.; PARVIN, A. Reinforcement of new and existing reinforced concrete beams with fiber-reinforced polymer bars and sheets – A numerical analysis. Structures, v. 40, p. 513-523, 2022. https://doi.org/10.1016/j.istruc.2022.04.046.
BARROS, J. A. O.; BAGHI, H.; VENTURA-GOUVEIA, A. Assessing the applicability of a smeared crack approach for simulating the behaviour of concrete beams flexurally reinforced with GFRP bars and failing in shear. Engineering Structures, v. 227, 2021. https://doi.org/10.1016/j.engstruct.2020.111391.
BROADHOUSE, B. The Winfrith Concrete Model in LS-DYNA3D. Report: SPD/D (95), v. 363, 1995. Disponível em: https://ftp.lstc.com/anonymous/outgoing/jday/concrete/Winfrith_Paper_Feb1995.pdf. Acesso em: 14 ago. 2023.
BROADHOUSE, B.; NEILSON, A. Modelling Reinforced Concrete Structures in Dyna3d. In: DYNA3D USER GROUP CONFERENCE, n. 1, 1987, Londres. Anais […]. Londres: United Kingdom Atomic Energy Establishment, 1987. Disponível em: https://ftp.lstc.com/anonymous/outgoing/support/FAQ_kw/concrete/Winfrith_Paper_Oct1987.pdf. Acesso em: 14 ago. 2023.
CHATTOPADHYAY, S.; RAJKUMAR, R.; UMAMAHESWARI, N. Analytical investigation on flexural behavior of concrete beams reinforced with gfrp rebars. International Journal of Civil Engineering and Technology, v. 9, p. 1-8, 2018.
CHEN, G.; AN, R.; XU, J.; FU, S. Finite element analysis of the reinforcement ratio effect on tension stiffening in FRP reinforced concrete beams. Composite Structures, v. 298, 2022. https://doi.org/10.1016/j.istruc.2020.01.033.
EL ZAREEF, M. A. An Experimental and Numerical Analysis of the Flexural Performance of Lightweight Concrete Beams reinforced with GFRP Bars. Engineering, Technology & Applied Science Research, v. 13, n. 3, p. 10776-10780, 2023. https://doi.org/10.48084/etasr.5871.
EL-EMAM, H.; EL-SISI, A.; REDA, R.; SELEEM, M.; BNENI, M. Effect of concrete cover thickness and main reinforcement ratio on flexural behavior of RC beams strengthened by NSM-GFRP bars. Frattura Ed Integrita Strutturale, v. 14, p. 197-210, 2020. https://doi.org/10.3221/IGF-ESIS.52.16.
EL-KAREIM SHOEIB, A.; EL-HASHMY, A. M.; ARADA, A. N.; SEDAWY, A. S. Analysis of the shear strength of hybrid materials bars in reinforced concrete beams without stirrups. Materials Today: Proceedings, v. 61, p. 966-976, 2022. https://doi.org/10.1016/j.matpr.2021.10.273.
EL-SAYED, T. A.; ALGASH, Y. A. Flexural behavior of ultra-high performance geopolymer RC beams reinforced with GFRP bars. Case Studies in Construction Materials, v. 15, 2021. https://doi.org/10.1016/j.cscm.2021.e00604.
GOUDA, O.; HASSANEIN, A.; GALAL, K. Experimental and numerical study on the crack width and deflection performance of GFRP reinforced concrete beams. Engineering Structures, v. 283, 2023. https://doi.org/10.1016/j.engstruct.2023.115721.
HALLQUIST, J.O. LS-DYNA Theory Manual. Livermore Software Technology Corporation (LSTC), Livermore, 2006.
HOSSEINI, M.; MEHDIPOUR, S.; BEIRANVAND, P. The effect of transverse steel rebars on the behavior of concrete beam reinforced with glass polymer rebars. Engineering Solid Mechanics, v. 5, p. 205-212, 2017. https://doi.org/10.5267/j.esm.2017.7.001.
HUANG, J. Finite element modeling (FEM) of GFRP bar reinforced concrete beam: Flexural behavior. Advanced Materials Research, v. 255-260, p. 3114-3118, 2011. https://doi.org/10.4028/www.scientific.net/AMR.255-260.3114.
JI, J.; ZHANG, R.; YU, C.; HE, L.; REN, H.; JIANG, L. Flexural Behavior of Simply Supported Beams Consisting of Gradient Concrete and GFRP Bars. Frontiers in Materials, v. 8, 2021. https://doi.org/10.3389/fmats.2021.693905.
KAKLAUSKAS, G.; TIMINSKAS, E.; NG, P. L.; SOKOLOV, A. Deformation and cracking behaviour of concrete beams reinforced with glass fibre-reinforced polymer bars. IABSE Symposium, Guimarães 2019: Towards a Resilient Built Environment Risk and Asset Management - Report, p. 500-506, 2019. https://doi.org/10.2749/guimaraes.2019.0500.
KALAMKAROV, A. L., FITZGERALD, S. B., MACDONALD, D. O., GEORGIADES, A. V. Pultruded fibre reinforced polymer reinforcements with embedded fibre optic sensors. Canadian Journal of Civil Engineering. v. 27, p. 972-984, 2011. https://doi.org/10.1139/l00-034.
KAZEMI, M; MADANDOUST, R.; CHASTRE, C.; ESFAHANI, M. R.; COURARD, L. Numerical study on the flexural behaviour of normal- and high-strength concrete beams reinforced with GFRP bar, using different amounts of transverse reinforcement. Structures, v. 34, p. 3113-3124, 2021. https://doi.org/10.1016/j.istruc.2021.09.077.
KUMAR, D. S.; RAJKUMAR. R. Experimental Investigation on Flexural Behavior of Concrete Beam with Glass Fibre Reinforced Polymer Rebar as internal reinforcement. International Journal of Chemical Sciences, v. 14, p. 319-29, 2016.
MARKOU, G.; ALHAMAYDEH, M. 3D Finite Element Modeling of GFRP-Reinforced Concrete Deep Beams without Shear Reinforcement. International Journal of Computational Methods, v. 15, 2018. https://doi.org/10.1142/S0219876218500019.
MATOS, B.; CORREIA, J. R.; CASTRO, L. M. S.; FRANÇA, P. Structural response of hyperstatic concrete beams reinforced with GFRP bars: Effect of increasing concrete confinement. Composite Structures, v. 94, p. 1200-1210, 2012. https://doi.org/10.1016/j.compstruct.2011.10.021.
MOHAMED, K.; FARGHALY, A. S.; BENMOKRANE, B.; NEALE, K. W. Nonlinear finite-element analysis for the behavior prediction and strut efficiency factor of GFRP-reinforced concrete deep beams. Engineering Structures, v. 137, p. 145-161, 2017. https://doi.org/10.1016/j.engstruct.2017.01.045.
MOHAMED, O. A., KHATTAB, R.; AL HAWAT, W. Numerical Study on Deflection Behaviour of Concrete Beams Reinforced with GFRP Bars. IOP Conference Series: Materials Science and Engineering, v. 245, 2017. https://doi.org/10.1088/1757-899X/245/3/032065.
MOHAMED, O. A.; KHATTAB, R. Numerical analysis of concrete beam reinforced with glass fiber reinforced polymer bars. Proceedings of International Structural Engineering and Construction, v. 4, 2017. https://doi.org /10.14455/ISEC.res.2017.141.
MOHAMMED, S. A.; SAID, A. M. I. Analysis of concrete beams reinforced by GFRP bars with varying parameters. Journal of the Mechanical Behavior of Materials, v. 31, n. 1, p. 767-774, 2022. https://doi.org/10.1515/jmbm-2022-0068.
MONGEON, P.; PAUL-HUS, A. The journal coverage of Web of Science and Scopus: a comparative analysis. Scientometrics, v. 106, n. 1, p. 213-228, 2016. https://doi.org/10.1007/s11192-015-1765-5.
MOUBARAK, A. M. R.; IBRAHIM, A.; FAROUK, M. A.; ELWARDANY, H. Shear performance of glass fiber reinforced concrete beams with diverse embedded GFRP trusses. Case Studies in Construction Materials, v. 18, 2023. https://doi.org/10.1016/j.cscm.2023.e02195.
NASSIF, M. K; ERFAN, A. M.; FADEL, O. T.; EL-SAYED, T. A. Flexural behavior of high strength concrete deep beams reinforced with GFRP bars. Case Studies in Construction Materials, v. 15, 2021. https://doi.org/10.1016/j.cscm.2021.e00613.
OMRANI, M. H.; DEHESTANI, M.; YOUSEFPOUR, H. Flexural behavior of lightweight concrete beams reinforced with GFRP bars and prestressed with steel strands. Structural Concrete, v. 22, n. 1, p. 69-80, 2021. https://doi.org/10.1002/suco.201900342.
PEREIRA, M. F.; CHRISTOFORO, A. L.; ALMEIDA, J. P. B. Influência de parâmetros na modelagem de vigas de concreto armado. Holos, v. 37(1), p. 1-23, 2021. https://doi.org/10.15628/holos.2021.10875.
PREMALATHA, J.; SHANTHI VENGADESHWARI, R.; SHIHARI, P. Finite Element Modeling and Analysis of RC Beams with Gfrp and Steel Bars. International Journal of Civil Engineering and Technology, v. 8, p. 671-679, 2017.
RESATOGLU, R.; MUHAMMAD, M. S. Comparative study of steel and glass fibre reinforced polymer (GFRP) bars in RC members. ARPN Journal of Engineering and Applied Sciences, v. 14, n. 16, 2019.
SAGHER, A.; ABED, F. Finite element parametric study of the shear behavior of GFRP-RC short beams. 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab Emirates, p. 1-5, 2017. https://doi.org/10.1109/ICMSAO.2017.7934912.
SAID, M.; SHANOUR, A. S.; MUSTAFA, T. S.; ABDEL-KAREEM, A. H.; KHALIL, M. M. Experimental flexural performance of concrete beams reinforced with innovative hybrid bars. Engineering Structures, v. 226, 2021. https://doi.org/10.1016/j.engstruct.2020.111348.
SAID, M.; ADAM, M. A.; MAHMOUD, A. A.; SHANOUR, A. S. Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars. Construction and Building Materials, v. 102, p. 574-591, 2016. https://doi.org/10.1016/j.conbuildmat.2015.10.185.
SALEH, Z.; SHEIKH, M. N.; REMENNIKOV, A. M.; BASU, A. Numerical investigations on the flexural behavior of GFRP-RC beams under monotonic loads. Structures, v. 20, p. 255-267, 2019a. https://doi.org/10.1016/j.istruc.2019.04.004.
______. Numerical analysis of behavior of glass fiber-reinforced polymer bar-reinforced concrete beams under impact loads. ACI Structural Journal, v. 116, p. 151-160, 2019b. https://doi.org/10.14359/51715658.
SORIANO, H. L. Elementos finitos: formulação e aplicação na estática e dinâmica das estruturas. 1. ed. Rio de Janeiro: Editora Ciência Moderna, 2009.
SUN, Y.; LIU, Y.; WU, T.; LIU, X.; LU, H. Numerical analysis on flexural behavior of steel fiber-reinforced LWAC beams reinforced with GFRP bars. Applied Sciences, v. 9, 2019, https://doi.org/10.3390/app9235128.
THONGCHOM, C.; BUI, L. V. H.; POONPAN, N.; PHUDTISARIGORN, N.; NGUYEN, P. T.; KEAWSAWASVONG, S.; MOUSA, S. Experimental and Numerical Investigation of Steel and GFRP-Reinforced Concrete Beams Subject to Fire Exposure. Buildings, v. 13, n. 3, 2023. https://doi.org/10.3390/buildings13030609.
TU, J.; ZHAO, Q.; GAO, K. The Design of Concrete Beams Reinforced with GFRP Bars Based on Crack Width. Materials, v. 15, n. 18, 2022. https://doi.org/10.3390/ma15186467.
WONG, P. S.; VECCHIO, F. J. VecTor2 & formworks user’s manuals. Toronto, Department of Civil Engineering, University of Toronto, 2002.
WU, W. P. Thermomechanical properties of fiber-reinforced plastic (FRP) bars. 1990. Dissertação (Mestrado em Engenharia) – West Virginia University, Morgantown, West Virginia, 1990. Disponível em: https://researchrepository.wvu.edu/cgi/viewcontent.cgi?article=11049&context=etd. Acesso em: 10 ago. 2023.
YANG, Q.; ZHANG, Y.; TU, Z. The study about flexural performance of GFRP bar reinforced concrete beams based on numerical calculation method. Applied Mechanics and Materials, v. 29-32, p. 1350-1356, 2010. https://doi.org/10.4028/www.scientific.net/AMM.29-32.1350.
YOU, Y. J.; KIM, J. H. J.; KIM, S. J.; PARK, Y. H. Methods to enhance the guaranteed tensile strength of GFRP rebar to 900 MPa with general fiber volume fraction. Construction and Building Materials, v. 75, p. 54-62, 2015. https://doi.org/10.1016/j.conbuildmat.2014.10.047.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Autores que publicam nesta revista concordam com os seguintes termos: Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Licença Creative Commons Attribution que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.