Esta é uma versão desatualizada publicada em 2022-12-27. Leia a versão mais recente.

ATUALIZAÇÃO DE MODELOS NUMÉRICOS A PARTIR DE DADOS EXPERIMENTAIS PARA MONITORAMENTO ESTRUTURAL: MAPEAMENTO SISTEMÁTICO

Autores

DOI:

https://doi.org/10.5216/reec.v18i2.63758

Palavras-chave:

Atualização de modelos, Identificação de sistemas, Ensaio de vibração, Integridade estrutural

Resumo

RESUMO: A necessidade de monitoramento em estruturas aumenta a demanda por novos métodos de monitoramento, uma vez que ensaios de vibração forçada se tornam inviáveis em estruturas de grande porte. O aumento do acesso a novas tecnologias possibilita o estudo de identificação modal de estruturas utilizando somente carregamento ambiente, seguido de atualização de modelos numéricos e possíveis detecções de danos. Seguindo essa temática, realizou-se um mapeamento sistêmico em base de dados com intuito de caracterizar os estudos relacionados a esse objeto de estudo. Termos lógicos foram inseridos na busca, seguidos de filtragem de aderência de título e resumo. Após a leitura dos resumos dos 1006 artigos resultantes da pesquisa inicial, 76 foram selecionados e analisados conforme a quantidade, ano de publicação e periódico publicado. Entende-se que o crescimento dessa pesquisa se deu após o início da década de 2000, indicando o acesso a processamento como principal fator determinante para aumento do interesse por parte dos pesquisadores.

 ABSTRACT: The need for monitoring in structures increases the demand for new monitoring methods, since forced vibration testing becomes unviable in large structures. Increased access to new technologies makes it possible to study the modal identification of structures using only environmental loading, followed by updating numerical models and possible damage detections. Following this theme, a systemic mapping was carried out in a database with the purpose of characterizing the studies related to this object of study. Logical terms were entered in the search, followed by title tacking and summary. After reading the abstracts of the resulting 1006 articles from the initial research, 76 were selected and analyzed according to quantity, year of publication and periodical published. It is understood that the growth of this research occurred in the beginning of the year 2000, indicating the access to processing as the main determining factor to increase the interest on the part of the researchers.

Downloads

Não há dados estatísticos.

Biografia do Autor

João Pedro Sena, Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brasil

Universidade Federal de Uberlândia (UFU), Uberlândia, Minas Gerais, Brasil

Wellington Andrade da Silva, Universidade Federal de Catalão (UFCAT), Catalão, Goiás, Brasil

Universidade Federal de Catalão (UFCAT), Catalão, Goiás, Brasil

Iviane Cunha Santos, Departamento Nacional de Infraestrutura de Transportes (DNIT), Brasília, Distrito Federal, Brasil

Departamento Nacional de Infraestrutura de Transportes (DNIT), Brasília, Distrito Federal, Brasil

Marcos Honorato Oliveira, Universidade de Brasília (UnB), Brasília, Distito Federal, Brasil

Universidade de Brasília (UnB), Brasília, Distito Federal, Brasil

Maurício de Pina Ferreira, Universidade Federal do Pará (UFPA), Belém, Pará, Brasil

Universidade Federal do Pará (UFPA), Belém, Pará, Brasil

Referências

ALTUNIŞIK, A. C.; OKUR, F. Y.; KAHYA, V. Automated model updating of multiple cracked cantilever beams for damage detection. Journal Of Constructional Steel Research, v. 138, p.499-512, nov. 2017. DOI: https://doi.org/10.1016/j.jcsr.2017.08.006

ALTUNIŞIK, A. C.; KARAHASAN, O. Ş.; GENÇ, A. F.; OKUR, F. Y.; GÜNAYDIN, M.; ADANUR, S. Sensitivity-Based Model Updating of Building Frames using Modal Test Data. Ksce Journal Of Civil Engineering, v. 22, n. 10, p.4038-4046, 31 maio 2018a. DOI: http://dx.doi.org/10.1007/s12205-018-1601-6

ALTUNIŞIK, A. C.; OKUR, F. Y.; GENÇ, A. F.; GÜNAYDIN, M.; KARAHASAN, O. Automated Model Updating Effect on the Linear and Nonlinear Dynamic Responses of Historical Masonry Structures. Experimental Techniques, v. 42, n. 6, p.605-621, 6 set. 2018b. DOI: https://doi.org/10.1007/s40799-018-0271-0

ARAÚJO, I. G.; MALDONADO, E.; CHO, G. C. Ambient vibration testing and updating of the finite element model of a simply supported beam bridge. Frontiers Of Architecture And Civil Engineering In China, v. 5, n. 3, p.344-354, set. 2011. DOI: https://doi.org/10.1007/s11709-011-0124-8

BAILEY, J.; BUDGEN, D.; TURNER, M; KITCHENHAM, B; BRERETON, P.; LINKMAN, S. Evidence relating to Object-Oriented software design: A survey. First International Symposium On Empirical Software Engineering And Measurement (esem 2007), [s.l.], p.482-484, set. 2007. Institute of Electrical and Electronics Engineers (IEEE). DOI: https://doi.org/10.1109/ESEM.2007.58

BANERJI, P.; CHIKERMANE, S. Condition assessment of a heritage arch bridge using a novel model updation technique. Journal of Civil Structure Health Monitoring, 2012. DOI: http://dx.doi.org/10.1007/s13349-011-0013-9

CASTRO-TRIGUERO, R.; GARCIA-MACIAS, E.; FLORES, E. S.; FRISWELL, M. I.; GALLEGO, R. Multi-scale model updating of a timber footbridge using experimental vibration data. Engineering Computations, v. 34, n. 3, p.754-780, 2 maio 2017. DOI: https://doi.org/10.1108/EC-09-2015-0284

CHANG, C. C.; CHANG, T. Y. P.; XU, Y. G. Adaptive neural networks for model updating of structures. Smart Materials And Structures, v. 9, n. 1, p.59-68, 1 fev. 2000. DOI: https://doi.org/10.1088/0964-1726/9/1/306

CHEN, S.; LIN, W.; YU, J.; QI, A. Free-Interface Modal Synthesis Based Substructural Damage Detection Method. Shock And Vibration, v. 2014, p.1-13, 2014. DOI: https://doi.org/10.1155/2014/741697

CHOUKSEY, M.; DUTT, J. K.; MODAK, S. V. Model updating of rotors supported on ball bearings and its application in response prediction and balancing. Measurement, v. 46, n. 10, p.4261-4273, dez. 2013. DOI: https://doi.org/10.1016/j.measurement.2013.08.009

CONDE, B.; RAMOS, L. F.; OLIVEIRA, D. V.; RIVEIRO, B.; SOLLA, M. Structural assessment of masonry arch bridges by combination of non-destructive testing techniques and three-dimensional numerical modelling: Application to Vilanova bridge. Engineering Structures, v. 148, p.621-638, out. 2017. DOI: https://doi.org/10.1016/j.engstruct.2017.07.011

DING, Y.; LI, A. Finite Element Model Updating for the Runyang Cable-Stayed Bridge Tower Using Ambient Vibration Test Results. Advances In Structural Engineering, v. 11, n. 3, p.323-335, jun. 2008. DOI: https://doi.org/10.1260/136943308785082599

FERRAIOLI, M.; MICCOLI, L.; ABRUZZESE, D. Dynamic characterisation of a historic bell-tower using a sensitivity-based technique for model tuning. Journal Of Civil Structural Health Monitoring, v. 8, n. 2, p.253-269, 14 fev. 2018. DOI: https://doi.org/10.1007/s13349-018-0272-9

FOTI, D.; DIAFERIO, M.; GIANNOCCARO, N. I.; MONGELLI, M. Ambient vibration testing, dynamic identification and model updating of a historic tower. Ndt & e International, v. 47, p.88-95, abr. 2012. DOI: http://dx.doi.org/10.1016/j.ndteint.2011.11.009

HU, J.; LAM, H.-F.; YANG, J.-H. Operational modal identification and finite element model updating of a coupled building following

Bayesian approach. Structural Control And Health Monitoring, v. 25, n. 2, 25 set. 2017. DOI: http://doi.org/10.1002/stc.2089

HUANG, Q.; GARDONI, P.; HURLEBAUS, S. A probabilistic damage detection approach using vibration-based nondestructive testing. Structural Safety, v. 38, p.11-21, set. 2012. DOI: https://doi.org/10.1016/j.strusafe.2012.01.004

JAISHI, B.; KIM, H.-J.; KIM, M. K.; REN, W.-X.; LEE, S.-H. Finite element model updating of concrete-filled steel tubular arch bridge under operational condition using modal flexibility. Mechanical Systems And Signal Processing, v. 21, n. 6, p.2406-2426, ago. 2007. DOI: http://dx.doi.org/10.1016/j.ymssp.2007.01.003

JAISHI, B.; REN, W.-X. Damage detection by finite element model updating using modal flexibility residual. Journal Of Sound And Vibration, v. 290, n. 1-2, p.369-387, fev. 2006. DOI: https://doi.org/10.1016/j.jsv.2005.04.006

______. Finite element model updating based on eigenvalue and strain energy residuals using multiobjective optimisation technique. Mechanical Systems And Signal Processing, v. 21, n. 5, p.2295-2317, jul. 2007. DOI: https://doi.org/10.1016/j.ymssp.2006.09.008

JIANG, D.; ZHANG, P.; FEI, Q.; WU, S. Comparative study of model updating methods using frequency response function data. Journal Of Vibroengineering. v. 16, n. 5, ago. 2014.

JUNG, D.-S.; KIM, C.-Y. Finite element model updating of a simply supported skewed PSC I-girder bridge using Hybrid Genetic Algorithm. Ksce Journal Of Civil Engineering, v. 17, n. 3, p.518-529, abr. 2013a. DOI: http://dx.doi.org/10.1007/s12205-013-0599-z

_____. Finite element model updating on small-scale bridge model using the hybrid genetic algorithm. Structure And Infrastructure Engineering, v. 9, n. 5, p.481-495, maio 2013b. DOI: https://doi.org/10.1080/15732479.2011.564635

KOMPALKA, A. S.; REESE, S.; BRUHNS, O. T. Experimental investigation of damage evolution by data-driven stochastic subspace identification and iterative finite element model updating. Archive Of Applied Mechanics, v. 77, n. 8, p.559-573, 14 fev. 2007. DOI: https://doi.org/10.1007/s00419-007-0114-4

LAM, H.-F.; YANG, J.-H.; AU, S.-K. Markov chain Monte Carlo-based Bayesian method for structural model updating and damage detection. Structural Control And Health Monitoring, v. 25, n. 4, 11 jan. 2018. DOI: https://doi.org/10.1002/stc.2140

LAM, H. F.; WONG, M. T.; YANG, Y. B. A feasibility study on railway ballast damage detection utilizing measured vibration of in situ concrete sleeper. Engineering Structures, v. 45, p.284-298, dez. 2012. DOI: http://dx.doi.org/10.1016/j.engstruct.2012.06.022

LEE, J. J.; LEE, J.-Y.; YI, J.-H.; YUN, C.-B.; JUNG, H.-Y. Neural networks-based damage detection for bridges considering errors in baseline finite element models. Journal Of Sound And Vibration, v. 280, n. 3-5, p.555-578, fev. 2005. DOI: http://dx.doi.org/10.1016/j.jsv.2004.01.003

MACKERLE, J. Finite Element Vibration and Dynamic Response Analysis of Engineering Structures. Shock And Vibration, v. 7, n. 1, p.39-56, 2000. DOI: http://dx.doi.org/10.1155/2000/405046

MOSAVI,A. A.; SEDARAT, H.; O'CONNOR, S. M.; EMAMI-NAEINI, A.; LYNCH, J. Calibrating a high-fidelity finite element model of a highway bridge using a multi-variable sensitivity-based optimisation approach. Structure And Infrastructure Engineering, v. 10, n. 5, p.627-642, 19 mar. 2013. DOI: https://doi.org/10.1080/15732479.2012.757793

NTOTSIOS, E.; PAPADIMITRIOU, C.; PANETSOS, P.; KARAISKOS, G.; PERROS, K.; PERDIKARIS, P. C. Bridge health monitoring system based on vibration measurements. Bulletin of Earthquake Engineering, 7 (2), 2009, pp.469-483. DOI: http://dx.doi.org/10.1007/s10518-008-9067-4

OH, B. K.; KIM, D.; PARK, H. S. Modal Response-Based Visual System Identification and Model Updating Methods for Building Structures. Computer-aided Civil And Infrastructure Engineering, v. 32, n. 1, p.34-56, 6 ago. 2016. DOI: https://doi.org/10.1111/mice.12229

PETERSEN, K.; FELDT; R.; MUJTABA, S.; MATTSSON, M. Systematic Mapping Studies in Software Engineering. School of Engineering, Blekinge Institute of Technology. University of Bari, Italy, 26 - 27 June. 2008.

PRANANTA, B.; KANAKIS, T.; VANKAN, J.; VAN HOUTEN, R. Model updating of finite element model using optimisation routine. Aircraft Engineering And Aerospace Technology, [s.l.], v. 88, n. 5, p.665-675, 5 set. 2016. DOI: https://doi.org/10.1108/AEAT-02-2015-0064

QIN, S.; ZHANG, Y.; ZHOU, Y.-L.; KANG, J. Dynamic Model Updating for Bridge Structures Using the Kriging Model and PSO Algorithm Ensemble with Higher Vibration Modes. Sensors, v. 18, n. 6, p.1879, 8 jun. 2018. DOI: https://doi.org/10.3390/s18061879

SABAMEHR, A.; LIM, C.; BAGCHI, A. System identification and model updating of highway bridges using ambient vibration tests. Journal Of Civil Structural Health Monitoring, v. 8, n. 5, p.755-771, 4 set. 2018. DOI: https://doi.org/10.1007/s13349-018-0304-5

YANG, J.; LAM, H. F.; HU, J. Ambient Vibration Test, Modal Identification and Structural Model Updating Following Bayesian Framework. International Journal Of Structural Stability And Dynamics, v. 15, n. 07, out. 2015. DOI: https://doi.org/10.1142/S0219455415400246

YANG, C.; ADAMS, D. E.; DERRISO M.; GORDON, G. Structural Damage Identification in a Mechanically Attached Metallic Panel Using Embedded Sensitivity Functions. Journal Of Intelligent Material Systems And Structures, v. 19, n. 4, p.475-485, 10 maio 2007. DOI: https://doi.org/10.1177/1045389X06076187

Publicado

2022-12-27

Versões

Como Citar

SENA, J. P.; DA SILVA, W. A.; SANTOS, I. C.; OLIVEIRA, M. H.; FERREIRA, M. de P. ATUALIZAÇÃO DE MODELOS NUMÉRICOS A PARTIR DE DADOS EXPERIMENTAIS PARA MONITORAMENTO ESTRUTURAL: MAPEAMENTO SISTEMÁTICO. REEC - Revista Eletrônica de Engenharia Civil, Goiânia, v. 18, n. 2, 2022. DOI: 10.5216/reec.v18i2.63758. Disponível em: https://revistas.ufg.br/reec/article/view/63758. Acesso em: 23 jun. 2024.