EFEITO DO USO DE AUTOLIZADO DE FERMENTO DE CERVEJA NO GANHO DE PESO DE BEZERROS DA RACA GIR⁽¹⁾

Peter Fischer*
Roulien Fontes*
Fernando Luiz Kratz***

INTRODUÇÃO

O fermento de cerveja é um subproduto industrial resultante da sua fabricação. O produto é composto de variedades de *Saccharomyces cerevisiae* e apresenta-se em forma de líquido leitoso com 10 a 12% de matéria seca e forte cheiro de cerveja.

O uso do produto "in natura" para a alimentação apresenta o inconveniente de determinar alteração da flora intestinal e ruminal seguido de pertubações digestivas expressas por diarréia profusa.

A adição de 4% de cloreto de sódio à cultura do fermento, processo patenteado, provoca a lise dos microor ganismos resultando em um produto inócuo para a digestação e rico em proteina, calcio, fósforo e vitaminas do grupo B.

O alto custo das fontes protéicas para a $s\underline{u}$ plementação da alimentação de animais domésticos está, constantemente, impelindo para a busca de produtos alternativos de menor custo o que $\stackrel{.}{\epsilon}$ o caso deste sub-produto industrial

⁽¹⁾ Recebido para publicação em Outubro de 1979.

^(*) Prof. Titular do Depto de Patologia EAV-UFG.

^(**) Prof. Assistente do Depto de Patologia EAV-UFG.

^(***) Prof. Titular do Depto de Biologia Geral ICB-UFG.

embora de produção limitada.

O presente trabalho objetiva estudar o efeito da suplementação de autolizado de fermento de cerveja no ganho de peso de bezerros da raça Gir em função da dosagem.

MATERIAL E MÉTODOS

O experimento foi realizado numa fazenda do Município de Goianápolis de propriedade do Sr. João Iano. Fo ram selecionados 32 bezerros da raça Gir sendo 16 machos e 16 fêmeas, com a idade variando de 8 a 9 meses.

Os animais escolhidos foram submetidos a exame clínico e receberam uma dosagem individual de vermífugo repetido seis meses após o início do experimento. Durante o experimento os animais foram vacinados, de 4 em 4 meses con tra a febre aftosa.

A alimentação dos bezerros durante o experimento foi uniforme, exceto quanto ao autolizado de cerveja,
constituindo-se de pasto variado, no período das águas, e a
crescido de farelo de trigo e silagem no período da sêca. Sal
mineral e sal comum, em cochos cobertos, estavam à disposição dos animais durante todo o experimento bem como água
"ad libitum".

O experimento foi realizado de acordo com es quema fatorial, com os fatores <u>suplementação</u> (com os seguin tes níveis: dosagens diárias de 0, 1, 2 e 3 kg de autolizado de cerveja) e sexos, em blocos casualizado e 4 repetições.

Na constituição dos blocos foram levados em conta os fatores raça, peso inicial e idade.

Nas pesagens, realizadas de 28 em 28 dias, pe la manhã, observou-se um jejum total prêvio de 15 horas. A pesagem era feita por bloco com sorteio dentro dos blocos.

Durante o experimento ocorreu a morte aciden tal de uma bezerra referente ao tratamento com suplementação de 3,0 kg/dia do 4º bloco de fêmeas. A recuperação desta par cela foi efetuada através de estimativa feita por equação de regressão à partir de dados de ganho de peso das fêmeas, des prezando o período da seca.

Composição média do autolizado de fermento de Cerveja, segundo Witting e Wiesch é:

 Aminoacidos essenciais g/kg de substância seca.

Proteina bruta	56,9
Lisina	41,5
Metionina	8,0
Treonina	29,0
Triptofano	7,4
Iso-leucina	29,6

2. Teores de vitaminas, mineirais e elementos de vestígio por kg de substância seca.

a) Vitaminas em mg;

	B,	25
4	Ac.nicotínio	500
	Ac.pantotênico	105
b) Minerais em g:	Calcio	7,3
	Fősforo	17,0
	Sodio	2,4
c) Elementos de vest	tígio em mg:	
	Ferro	560
	Manganês	80
	Zinco	109

190

RESULTADOS

Os quadros I e II mostram os resultados das pesagens obtidas durante a fase experimental.

O quadro III apresenta os ganhos de peso obt<u>i</u> dos no período de 196 dias em função da dosagem e do sexo , bem como apresenta os totais gerais, por sexo, bloco e trata mento.

Desde o primeiro dia do experimento os animais aceitaram bem o autolizado que foi fornecido, em diversos períodos, puro, misturado com silagem e misturado com farelo de trigo. Notou-se nos animais certa avidez pelo autolizado demonstrando, portanto, boa palatabilidade.

A observação continuada dos animais não mos trou nenhum caso de diarrêia ou de inapetência.

Um dos animais, o de nº 456, morreu durante o primeiro mês de experimento e as lesões encontradas indica

QUADRO I. Pesagens de 28 em 28 dias de 16 bezerros da Raça Gir com diferentes níveis de suple mentação de autolizado de fermento de cerveja em 196 dias.

CHETO			Datas	das Pesa	Pesagens		,	
Animaí	31.08.77	28.09.77	26.10.77	23.11.77	21.12.77	10.01.78	10.01.78 16.02.78	16.03.78
497 B	147	134	113	129	124	1	161	179
519 A	151	146	138	158	170	174	209	235
. OI.	151	150	133	161	174	172	200	215
458 V	144	129	115	131	149	145	166	183
147 B	153	156	134	136	158	156	188	202
117 A	152	144	100	157	169	170	200	225
476 L	152	147	1.33	163	176	178	213	233
II V	154	146	134	145	1.58	147	179	195
\$0.7 B	791	158	136	144	175	1	227	250
4 89 A	157	181	141	175	187	197	235	254
.1 60:	162	151	138	160	166	157	185	200
AS V	162	153	143	191	174	156	190	197
568 B	168	163	150	159	170	158	185	193
38 A	169	158	150	167	178	175	198	219
188	164	158	151	188	210	207	243	272
547 V	163	154	135	152	167	157	186	206

QUADRO II - Pesagens de 28 em 28 dias de 16 bezerras da Raça Gir com diferentes níveis de su-plementação de autolizado de fermento de cerveja em 196 dias.

438 B S41 A CAL				CBD	resagens			
438 B 541 A 541 I	1.08.77	28.09.77	26.10.77	23.11.77	21.12,77	10.01.78	16.02.78	16.03.78
541 A	128	130	111	1.32	141	143	169	184
CAI	130	127	131	150	162	161	193	509
2	128	117	113	132	138	130	146	150
502 V	126	126	125	150	158	;	180	183
455 B	151	157	143	157	174	173	206	225
484 A	150	146	146	181	192	193	233	241
T 009	150	142	126	154	159	155	174	180
513 V	151	142	139	161	170	170	195	204
406 B	134	128	111	112	119		136	146
477 A	133	125	127	159	171	174	200	215
S57 L	132	116	111	141	150	155	180	197
545 V	137	120	121	144	153	148	175	194
471 B	153	150	131	145	154	142	170	170
528 A	137	127	120	160	172	167	196	209
469 L	158	150	153	197	222	230	265	256
456 V	153	+	+,	+	+	+	+	* +

B - 0,0 Kg de fermento por dia A - 1,0 Kg de fermento por dia

* Parcela perdida

- 3,0 Kg de fermento por dia

2,0 Kg de fermento por dia

Valor estimado por regressão

ram o ofidismo como "causa morte".

QUADRO III - Ganho em peso de 36 bezerros da raça Gir, como diferentes níveis de suplementação de autoliza dos de fermento de cerveja em 196 dias.

0,0 kg/	1,0 kg	2,0 kg/	3,0 kg/	Totais	Totais
dia	dia	dia	dia	ae Blocos	Gerais
32	84	64	39	219	-
49	7.3	81	41	244	
88	97	38	35	258	
25	50	108	43	226	947
56	79	22	57	214	
74	91	30	53	248	
17	72	98	41*	228	906
			-		
353	628	506	566	1.853	
	32 49 88 25 56 74 12 17	32 84 49 73 88 97 25 50 56 79 74 91 12 82 17 72	32 84 64 49 73 81 88 97 38 25 50 108 56 79 22 74 91 30 12 82 65 17 72 98	dia dia dia 32 84 64 39 49 73 81 41 88 97 38 35 25 50 108 43 56 79 22 57 74 91 30 53 12 82 65 57 17 72 98 41*	dia dia dia dia de Blocos 32 84 64 39 219 49 73 81 41 244 88 97 38 35 258 25 50 108 43 226 56 79 22 57 214 74 91 30 53 248 12 82 65 57 216 17 72 98 41* 228

^{*} Parcela recuperada.

A partir dos dados do Quadro III foi realiza da uma análise de variância de blocos ao acaso com uso de regressão, cujos resultados estão representados no Quadro IV.

QUADRO IV - Tabela da análise da variância com regressão do ganho em peso de 36 bezerros da Raça Gir com diferentes níveis de suplementação de autolizado de fermento de cerveja em 196 dias.

Causas de Variação GL	sq	QM	F
Suplementação (R)			
Regressão linear 1	43,05	43.05	0.06 ns
Regressão quadrática 1	5.382.03	5.382.03	7,73 *
Regressão cúbica 1	897,76	897,76	1,29 ns
Sexos (S) 1	52,53	52.53	0.08 ns
Interação S x R 3	1.185.10	395.03	0.57 ns
Blocos dentro do sexo 6	416,44	69,41	0.10 ns
Residuo 18	12.527.81	695,99	-
TOTAL 31	20.504,72		

^{*} p 🧹 . 05

Da análise do Quadro anterior observa-se que existe relação entre o ganho em peso e a suplementação da die ta. Calculando-se a equação de regressão para todos os coeficientes (correspondentes a todos os componentes) até o úl timo significativo, mesmo que neste intervalo haja algum não significativo, obteve-se a seguinte equação que expressa o ganho de peso (Y) em função da dosagem (X):

$$Y = 44,94 + 37,87 - 12,97 x^2$$

FIGURA 1 - Gráfico e Equação de regressão do ganho em peso de 36 bezerros da Raça Gir, com diferentes níveis de suplementação de autolizado de fermento de cer veja em 196 dias.

DISCUSSÃO E CONCLUSÕES

Como ja foi salientado no capítulo Resultados, existe função entre a suplementação e ganho em peso. Pela na tureza da equação encontrada deduz-se que existe um aumento no ganho em peso com uma dosagem de suplementação baixa, pas sando por um máximo em torno da dosagem de 1,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores próximos da dosagem de 2,5 kg/dia e retornando aos niveis do controle em valores do controle em v

gem de 3,0 kg/dia. Uma extrapolação possível é a de que acima desta dosagem possam ocorrer os mesmos resultados inferiores aos obtidos com a ausência de suplementação (hipótese que será discutida ainda neste capítulo). Observa-se também que não existe efeito diferencial quanto aos sexos e nem interação sexo/dose, isto é, não existe resposta preferencial de qualquer sexo em relação a qualquer dos níveis de dosagem.

O aspecto da ação das diversas dosagens pode ser atribuido a existência de elementos que, em excesso, poderiam interferir na absorção ou bloquear alguns fenômenos digestivos. A literatura computada relata experiências em bezerros com ingestão de 2,5 a 3,5 kg/dia do fermento mas não estabelece, como no presente caso, a comparação entre a efetividade das diversas dosagens, o que não permite uma comparação direta.

Pode-se admitir que a extrema riqueza do produto em aminoácido e vitaminas do grupo B poderia agir como inibidor dos processos fermentativos em níveis de rúmen, tal vez agindo sobre a flora ruminal. Por outro lado a ingestão forçada de Na Cl (4% de fermento) eleva a ingestão deste sal a 40,80 e 120 g/dia o que poderia, também, provocar alterações da flora ruminal da mesma forma como determina a lise dos Saccharomyces cerevisiae.

O Quadro II mostra, claramente, que a suplementação de l Kg de fermento resultou num ganho de peso significativamente maior que o grupo testemunha, e, portanto , comprova a efetividade do produto neste nível. Caberá a ou tra experiência a comprovação da dosagem ideal que, por extrapolação deve-se situar entre 1,0 a 1,5 kg/dia.

Do presente trabalho pode-se concluir que:

- 1. Existe relação significativa entre o ganho de peso e a suplementação da dieta com o autolisado de Saccho romuces cerevisiae, nas condições experimentais.
- 2. Esta relação pode ser expressa pela equação: Y = 44,94 + 37,87 x 12,97 x², onde Y e a estimativa do ganho de peso em 196 dias e x e a dosagem de suplementação com o autolisado.
- 3. Da interpretação desta relação pode se con siderar a dosagem de 1.0 kg/dia como a adequada.
 - 4. O uso do produto em altas dosagens diminue

a sua efetividade, podendo inclusive, torná-lo, negativa se levarmos em conta a tendência da curva de regressão.

- 5. O uso de produto não provoca fenômenos patológicos clínicos detectáveis nos animais e apresenta excelente palatabilidade.
- 6. Nos limites do presente trabalho pode ser recomendado o uso de fermento em bezerros.

RESUMO

O presente trabalho trata do estudo da influência da ingestão do autolizado de fermento de cerveja no ganho de peso de bezerros da Raça Gir. O autolizado de fermento de cerveja é um sub-produto da fabricação de cerveja e a presenta-se rico em aminoácidos, vitaminas e minerais. No experimento foram utilizados 32 bezerros da Raça Gir, machos e fêmeas, distribuidos em blocos casualizados que receberam quatro níveis de dosagens diárias (0; 1; 2 e 3 kg) do produto. Após 196 dias de experimento concluiu-se que existe relação significativa entre o ganho de peso e a suplementação com o autolizado e que a dosagem/dia mais adequada é de 1 kg.

SUMMARY

The purpose of this paper is to study the influence of autolyzed beer yeast in the increase weight of Gir calves. The autolyzed beer yeasy is a by-product of beer breving. It is rich in aminoacids, vitamins and minerals. In the experiment there were 32 Gir calves, male and female, divided into aleatory groups, receiving 4 different revels of daily portions (0; 1; 2 and 3 kg) of the beet yeast. After 196 days of testing, a significant relationship between the increase of weight and the use of autolysed beer yeast was observed. The animals must recieve 1 kg of beer yeast daily.

AGRADECIMENTOS

Os autores agradecem a colaboração da Compa - nhia Cervejaria Antartica, na pessoa do Dr. DANIEL CANTEIROS.

BIBLIOGRAFIA CITADA

- 01. ANÔNIMO. Processo para elaboração de um alimento complementar para o gado a partir do fermento residual da fabricação de cerveja. Patente alemã nº 1.931.348. Au torizada em 10 de Maio de 1972. (Mimeografado) 3 p.
- 02. ANÔNIMO. Emprego de fermento de cerveja como alimento me diante autólise rapida. Patente espanhola nº 367.250 de 19 de Junho de 1969. (Mimeografado) 3 p.
- 03. WITTING,R. & WIESCHE. Fermento de cerveja líquida na <u>a</u> limentação dos suinos. Centro de Experimentação Agropecuária da firma BASF S/A, 6.703 limburgerhof R.F.A.