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Abstract: In this paper, we study two classes of hypersurfaces, namely, the DRMC-

hypersurfaces and the HDRMC-hypersurfaces in space forms M
n+1

(c), c = −1, 0, 1,

these classes include the Weingarten hypersurfaces of the spherical type obtained in

[1010]. For n = 2, we present a way to obtain DRMC-surfaces and HDRMC-surfaces in

M
3
(c) using two holomorphic functions. Also, we classify the DRMC-hypersurfaces

of rotation in M
n+1

(c) and the HDRMC-hypersurfaces of rotation in R
n+1.
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Resumo: Neste artigo, estudamos duas classes de hipersuperficies, a saber, as DRMC-

hipersuperfícies e as HDRMC-hipersuperfícies em formas espaciais M
n+1
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1 Introduction

The surfaces M ⊂ R
3 satisfying a functional relation of the form W (H,K) = 0,

where H and K are the mean and Gaussian curvatures of the surface M , respectively,
are called Weingarten surfaces. Examples of Weingarten surfaces are the surfaces
of revolution and the surfaces of constant mean or Gaussian curvature. In [77], the
authors study an important class of surfaces satisfying a linear relation of the form

aH + bK + c = 0,

where a, b, c ∈ R and a2 + b2 6= 0. These surfaces are called linear Weingarten

surfaces. The paper [66], is devoted to the integrability of linear Weingarten surfaces.

Corro, in [22] presented a way of parameterizing surfaces as envelopes of a congru-
ence of spheres in which an envelope is contained in a plane and with radius function
h associated with a hydrodynamic type system. As an application, it studies the
surfaces in hyperbolic space H

3 satisfying the relation

2ach
2(c−1)

c (H − 1) + (a+ b− ach
2(c−1)

c )K = 0,

where a, b, c ∈ R, a+ b 6= 0, c 6= 0, H is the mean curvature and K is the Gaussian
curvature. This class of surfaces includes the Bryant surfaces and the flat surfaces of
the hyperbolic space and are called generalized Weingarten surfaces of Bryant type.

In [33] the authors study the surfaces M in the hyperbolic space H
3 satisfying the

relation
2(H − 1)e2µ +K(1− e2µ) = 0,

where µ is a harmonic function with respect to the quadratic form σ = −KI+2(H−
1)II, I and II are the first and the second quadratic form of M . These surfaces are
called Generalized Weingarten surfaces of harmonic type.

In [55], the authors study a class of oriented hypersurfaces M in hyperbolic space
(n+ 1)-dimensional that satisfy a Weingarten relation in the form

n
∑

r=0

(c− n+ 2r)

(

n

r

)

Hr = 0,

where c is a real constant and Hr is the rth mean curvature of the hypersurface M .
They show that this class of hypersurfaces is characterized by a harmonic application
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derived from the two hyperbolic Gauss map. Looking these hypersurfaces as orthog-
onal to a congruence of geodesics, they also show the relation of such hypersurfaces
with solutions of the equation ∆u+ ku

n+2
n−2 = 0, where k ∈ {−1, 0, 1}.

In [99], the author present a way to parameterize hypersurfaces as congruence of
spheres in which an envelope is contained in a hyperplane. Using this parametriza-
tion is presented a generalization of the surfaces of the spherical type (Laguerre
minimal surfaces) studied in [88], namely the Weingarten hypersurfaces of the spheri-

cal type, i.e. the oriented hypersurfaces of the Euclidean space M ⊂ R
n+1 satisfying

a Weingarten relation of the form

n
∑

r=1

(−1)r+1rf r−1

(

n

r

)

Hr = 0,

where f ∈ C∞(M ;R) and Hr is the rth mean curvature of M . Later, Reyes and
Riveros [1010], generalize the results obtained by [99] in space forms.

In this paper, we study two classes of hypersurfaces, namely, the DRMC-hypersurfaces
and the HDRMC-hypersurfaces in space forms M

n+1
(c), c = −1, 0, 1, defined as:

An orientable hypersurface M ⊂ R
n+1, n ≥ 2, is called a hypersurface with ra-

dial mean curvature which depends on the distance and radius functions (in short,
DRMC-hypersurface) if satisfy

HR

1− d
+ (a− c)h = 0, a ∈ R.

An orientable hypersurface M ⊂ R
n+1, n ≥ 2, is called a hypersurface with radial

mean curvature of harmonic type (in short HDRMC-hypersurface) if satisfy

∆

(

HR

1− d
+ (a− c)h

)

= 0,

where HR is the radial mean curvature.
We observe that when a = c = 0 and HR = 0 we obtain the Weingarten hyper-
surfaces of the spherical type estudied by Machado in [99], also, when a = c and
HR = 0 we obtain the Weingarten hypersurfaces of the spherical type estudied by
Reyes and Riveros in [1010]. For n = 2 we present a way to obtain DRMC-surfaces
and HDRMC-surfaces in M

3
(c) using two holomorphic functions. Also, we classify

the DRMC-hypersurfaces of rotation in M
n+1

(c) and the HDRMC-hypersurfaces of
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rotation in R
n+1.

2 Preliminaries

Let M
n+1

(c) be, the simply connected space form of sectional curvature c = −1, 1, 0.
M

n+1
(c) will denote the (n+1)-dimensional hyperbolic space H

n+1, if c = −1, the
Euclidean space R

n+1 when c = 0 or the sphere S
n+1, if c = 1.

Let U ⊂ R
n be an open set of Rn such that u = (u1, u2, . . . , un) ∈ U . The partial

derivatives of f : U ⊂ R
n → R

m, with respect to ui, 1 ≤ i ≤ n, will be denoted by
f,i.
We denote by L

n+2 the space of (n+2)-tuples u = (u1, u2, . . . , un+2) ∈ R
n+2 with

the Lorentzian metric 〈u, v〉 =
n+1
∑

i=1

uivi − un+2vn+2, where v = (v1, v2, . . . , vn+2) and

we consider the hyperbolic space H
n+1 as a hypersurface of Ln+2, namely,

H
n+1 =

{

u ∈ L
n+2; 〈u, u〉 = −1, un+2 > 0

}

.

Also, we consider the sphere S
n+1 as a hypersurface of R

n+2 with the Euclidean
metric, namely,

S
n+1 =

{

u ∈ R
n+2; 〈u, u〉 = 1

}

.

Definition 1. Let M be a hypersurface of M
n+1

(c). We say that M is orientable,
if there exist a unit vector field N normal to TpM , for all p ∈ M . N is known as
Gauss map of M . In local coordinates,

N,i =
n
∑

j=1

WijX,j , 1 ≤ i ≤ n,

where X is a parametrization of M . The matrix W = (Wij) is known as Weingarten

matrix of M .

Definition 2. The mean curvature and the Gauss-Kronecker curvature of M are
given by

H =
1

n

n
∑

i=1

ki , K =
n
∏

i=1

ki,

where k1, . . . , kn are the principal curvatures of M .
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Definition 3. The rth-mean curvature Hr of M is defined by

Hr =
Sr(W )
(

n

r

) ,

where, for intergers 0 ≤ r ≤ n, Sr(W ), is defined by

S0(W ) = 1,

Sr(W ) =
∑

1≤i1<...<ir≤n

ki1 . . . kir .

Definition 4. Let M be a hypersurface of M
n+1

(c), n ≥ 2. M is a Weingarten

hypersurface of the spherical type in M
n+1

(c), if the rth mean curvatures of M in
M

n+1
(c) satisfy the equation

n
∑

r=1

(−1)r−1rf r−1Hr = 0,

for some function f ∈ C∞(M,R).

From now on, we will consider ec given by

ec =











(0, 0, . . . , 0, 1, 0) ∈ L
n+2, if c = −1,

(0, 0, . . . , 0, 1) ∈ R
n+1, if c = 0,

(0, 0, . . . , 0, 0, 1) ∈ R
n+2, if c = 1.

Definition 5. Let M be an orientable hypersurface in M
n+1

(c) and N the unit
normal vector field of M in M

n+1
(c), such that N(p) 6= ec, ∀ p ∈ M . We define the

distance and radius functions d, h : M → R given by

d(p) = 〈N(p), ec〉 , h(p) =
〈p, ec〉
1− d

, p ∈ M (1)

and the radial curvature ki of M as

ki =
ki

hki − 1
, 1 ≤ i ≤ n, (2)

with hki − 1 6= 0, ∀ 1 ≤ i ≤ n and ki are the principal curvatures of M ⊂ M
n+1

(c).
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Definition 6. We define the radial mean curvature HR of the hypersurface M in
M

n+1
(c) as

HR =
1

n

n
∑

i=1

ki. (3)

We consider Mn(c) a hypersurface of M
n+1

(c), such that Mn(c) = H
n, if c = −1,

Mn(c) = R
n if c = 0 or Mn(c) = S

n, if c = 1, with unit normal vector field
N(p) = ec, ∀ p ∈ Mn(c).
Let Y : U → Mn(c) be a local orthogonal parametrization of Mn(c). If Lij =

〈Y,i, Y,j〉 , 1 ≤ i, j ≤ n, then Lii 6= 0 and Lij = 0 for i 6= j. The Christoffel symbols
of Lij are given by

Γm
ij = 0, for distinct i, j,m, Γj

ij =
Ljj,i

2Ljj

, for all i, j, Γj
ii = −Lii,j

2Ljj

, for i 6= j. (4)

We consider the sphere S
n+1 ⊂ R

n+2, e1 = (0, 0, . . . , 0, 1) and −e1 = (0, 0, . . . , 0,−1)

the north pole and south pole of Sn+1, respectively. The stereographic projection
P− : Sn+1 − {−e1} → R

n+1 and P+ : Sn+1 − {e1} → R
n+1 are diffeomorphism given

by

P−(q) =
q − 〈q, e1〉 e1
1 + 〈q, e1〉

, P+(q) =
q − 〈q, e1〉 e1
1− 〈q, e1〉

, q ∈ S
n+1. (5)

Therefore, the inverse mapping P−1
− and P−1

+ are given by

P−1
− (p) =

(2p, 1− 〈p, p〉)
1 + 〈p, p〉 , P−1

+ (p) =
(2p, 〈p, p〉 − 1)

1 + 〈p, p〉 , p ∈ R
n+1. (6)

We consider H
n+1 ⊂ L

n+2 and we define

P : H
n+1 → R

n+1 (7)

u → P (u),

where P (u) is the intersection of the hyperplane

R
n+1 =

{

(u1, u2, . . . , un+1, un+2) ⊂ R
n+2; un+2 = 0

}

with the line that passes through the points u and (0, 0, . . . , 0,−1) ∈ R
n+2. P is

known as the hyperbolic stereographic projection.
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The following result was obtained in [11].

Proposition 1. Let P : Hn+1 → R
n+1 be given by (77). Then P is a diffeomorphism

of Hn+1 on Bn+1(1) = {u ∈ R
n+1; |u| < 1} .

Therefore, P−1 : Bn+1(1) → H
n+1 given by

P−1(u) =
1

1− 〈u, u〉 (2u, 1 + 〈u, u〉) , u ∈ Bn+1(1), (8)

is a parametrization of Hn+1 ⊂ L
n+2.

The following results were obtained in [1010].

Theorem 1. Consider Σ an orientable hypersurface of M
n+1

(c), N the unit normal

vector field of Σ in M
n+1

(c) such that N(p) 6= ec, ∀ p ∈ Σ, h : Σ → R given by

(11) and X : U → Σ a local parametrization of p ∈ Σ. Then, there exist a local

parametrization Y : U → Mn(c), such that

X(u) = Y (u) + h(u) [ec −N(u)] , u ∈ U. (9)

If Y is a local orthogonal parametrization of Mn(c), then

X = Y − 2h

S

(

n
∑

i=1

h,i

Lii

Y,i − ec + chY

)

, (10)

N =
2

S

(

n
∑

i=1

h,i

Lii

Y,i − ec + chY

)

+ ec, (11)

where

S =
n
∑

i=1

(h,i)
2

Lii

+ ch2 + 1 6= 0. (12)
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The first, second and third fundamental forms of Σ in M
n+1

(c), are given by

I = 〈X,i, X,j〉 = Lij −
2h

S
(VjiLii + VijLjj) +

4h2

S2

n
∑

k=1

VikVjkLkk, (13)

II = −〈N,i, X,j〉 =
4h

S2

n
∑

k=1

VikVjkLkk −
2

S
VjiLii, (14)

III = 〈N,i, N,j〉 =
4

S2

n
∑

k=1

VikVjkLkk, (15)

respectively, where

Vij =
1

Ljj

(

h,ij −
n
∑

l=1

Γl
ijh,l

)

+ chδij, 1 ≤ i, j ≤ n, (16)

and Γl
ij are the Christoffel symbols of the metric Lij = 〈Y,i, Y,j〉 , 1 ≤ i, j ≤ n.

The Weingarten matrix W = (Wij) is given by

W = 2(SIn − 2hV )−1V, (17)

where In is the identity matrix and V = (Vij).

The condition of regularity of X is given by

det(SIn − 2hV ) 6= 0. (18)

Conversely, given a local orthogonal parametrization Y : U → Mn(c) ⊂ M
n+1

(c),

where U is a simply connected domain of Rn and a differentiable function h : U → R.

Then (1010) is a hypersurface of M
n+1

(c) with Gauss map given by (1111) and (1212)-(1818)

are satisfied.

Proposition 2. Let X : U ⊂ R
n → Σ ⊂ M

n+1
(c) be a parametrization of a

hypersurface Σ given by (1010). The following statements are equivalent

(1) X is parametrized by lines of curvature.

(2) Vij = 0, for 1 ≤ i 6= j ≤ n.

(3) N,i = −k,iX,i, for all 1 ≤ i ≤ n, where

NEXUS Mathematicæ, Goiânia, v. 4, 2021, e20009. 8
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ki =
2Vii

2hVii − S
, 1 ≤ i ≤ n, (19)

are the principal curvatures of X.

Remark 1. From (1919), the eigenvalues σi of the matrix V are given by

σi =
Ski

2(hki − 1)
, 1 ≤ i ≤ n, (20)

where ki are the eigenvalues of the Weingarten matrix W .

From (2020) we have that σi =
S

2
ki. Therefore,

n
∑

i=1

Vii =
nS

2
HR. (21)

Let Y be a local orthogonal parametrization of Mn(c) ⊂ M
n+1

(c) given by

Y =











P−1
− , P−1

+ : Rn → S
n, if c = 1,

I : Rn → R
n, if c = 0,

P−1 : Bn(1) → H
n, if c = −1,

(22)

where P−1
− , P−1

+ are given by (66), I is the identity function of Rn and P−1 is given
by (88). The metric L in the parametrization Y is given by Lij = 〈Y,i, Y,j〉 = 0, if
1 ≤ i 6= j ≤ n and Lii = 〈Y,i, Y,i〉 = Jc, where

Jc(u) =











4
(1+〈u,u〉)2 , u ∈ R

n, if c = 1,

1, u ∈ R
n, if c = 0,

4
(1−〈u,u〉)2 , u ∈ Bn(1), if c = −1.

(23)

From (44), the Christoffel symbols associated to Lij are given by

Γi
ii =

Jc,i

2Jc
, Γi

ij =
Jc,j

2Jc
= −Γj

ii, 1 ≤ i 6= j ≤ n. (24)

The following result can be found in [1010].

Theorem 2. Let Σ be an orientable hypersurface of M
n+1

(c) given by Theorem 11

where Y is the local orthogonal parametrization of Mn(c) ⊂ M
n+1

(c) given by (2222).

Σ is a rotation spherical hypersurface of M
n+1

(c) if and only if h is a radial function.
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In [44], is introduced the generalized Helmholtz equation and present explicit
solutions to this generalized Helmholtz equation, these solutions depend on three
holomorphic functions.
The two-dimensional Helmholtz equation for h : U ⊂ R

2 → R defined by

∆h(u) + kΩ2(u)h(u) = 0, (25)

where Ω(u) indicates the wave number and k is a non-zero real constant.

Definition 7. The two-dimensional generalized Helmholtz equation for h : U ⊂
R

2 → R is defined as

∆

[

1

Ω2(u)

(

∆h(u) + kΩ2(u)h(u)
)

]

= 0, (26)

where Ω(u) is a non-zero C2 function and k is a non-zero real constant.

The following Lemma is an equivalent version to Lemma 1 shown in [1111].

Lemma 1. If f1, f2, g : C → C are holomorphic functions of u = u1 + iu2, such

that 〈1, f1〉 + 〈g, f2〉 = 0. Then f1 = −z1g + ic1, f2 = ic2g + z1, where ci are real

constants and z1 ∈ C.

3 Hypersurfaces with radial mean curvature

In this section, we study two classes of hypersurfaces, namely, the DRMC-hypersurfaces
and the HDRMC-hypersurfaces.

Definition 8. We say that M is a hypersurface with radial mean curvature which

depends on the distance and radius functions (in short DRMC-hypersurface) if the
relation

HR

1− d
+ (a− c)h = 0, a ∈ R, (27)

is satisfied.
Also, we say that M is a hypersurface with radial mean curvature of harmonic type

(in short HDRMC-hypersurface) if the relation

∆

(

HR

1− d
+ (a− c)h

)

= 0, (28)
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is satisfied.

We observe that when HR = 0, M is a Weingarten hypersurface of the spherical
type in M

n+1
(c) (see [1010] for more details).

Proposition 3. Let Σ be an orientable hypersurface of M
n+1

(c) given by Theorem

11, where Y is a local orthogonal parametrization of Mn(c) ⊂ M
n+1

(c). Then Σ

defines a hypersurface in M
n+1

(c) satisfying

∆Lh+ nch =
n

1− d
HR, (29)

where L is the metric of Mn(c) given by Lij = 〈Y,i, Y,j〉 , 1 ≤ i, j ≤ n and ∆L is the

Laplacian operator with respect to the metric L.

Proof. Let Σ be an orientable hypersurface of M
n+1

(c) given by Theorem 11. From
(1616) we obtain that the trace of the matrix V in terms of the Laplacian operator is
given by

n
∑

i=1

Vii = ∆Lh+ nch. (30)

From (1111), we get d = 〈N(p), ec〉 = 1− 2
S
, hence, S =

2

1− d
. Using (3030) in (2121) we

obtain (2929). The proof is complete.

Corollary 1. Let Σ be an orientable hypersurface of M
n+1

(c) given by Theorem 11

and a ∈ R.

(1) Σ is DRMC-hypersurface if and only if △Lh+ nah = 0.

(2) Σ is HDRMC-hypersurface if and only if ∆(△Lh+ nah) = 0.

(3) A DRMC-hypersurface Σ in M
n+1

(c) with h 6= 0 is a Weingarten hypersurface

of the spherical type if and only if a = c.

Proof. By Proposition 33, we get

△Lh+ nch =
n

1− d
HR ⇐⇒ △Lh+ nah =

n

1− d
HR + n(a− c)h.

Therefore,

△Lh+ nah = 0 ⇐⇒ 1

1− d
HR + (a− c)h = 0,

NEXUS Mathematicæ, Goiânia, v. 4, 2021, e20009. 11
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∆(△Lh+ nah) = 0 ⇐⇒ ∆

(

1

1− d
HR + (a− c)h

)

= 0.

From these expressions we get (1) and (2).
(3) If Σ is a Weingarten hypersurface of the spherical type then HR = 0 and conse-
quently (a− c)h = 0, therefore a = c.

Conversely, if a = c then
1

1− d
HR = 0. The proof is complete.

Theorem 3. Let Σ be an orientable hypersurface of M
n+1

(c), n ≥ 2 given by

Theorem 11 where Y is the local orthogonal parametrization of Mn(c) ⊂ M
n+1

(c)

given by (2222). Then Σ is a DRMC-hypersurface or a HDRMC-hypersurface if and

only if h is a solution of the equation given by

∆h

Jc
+

(n− 2)

2(Jc)2
〈∇Jc,∇h〉+ anh = 0, (31)

∆

[

∆h

Jc
+

(n− 2)

2(Jc)2
〈∇Jc,∇h〉+ anh

]

= 0, (32)

respectively, where Jc is given by (2323).

Proof. By Corollary 11, we must calculate ∆Lh (the Laplacian operator of the func-
tion h with respect to the metric L) in the parameterization Y given by (2222). From
Remark 11 we have that Lij = 0, if 1 ≤ 1 6= j ≤ n and Lii = Jc, 1 ≤ i ≤ n. Thus,
from definition of Laplacian operator we obtain that

∆Lh =
∆h

Jc
+

(n− 2)

2(Jc)2
〈∇Jc,∇h〉 .

Hence, it follows (3131) and (3232).

Remark 2. For n = 2, from Theorem 33 we obtain that the DRMC-surfaces and
the HDRMC-surfaces satisfy

1

Jc
(∆h+ 2aJch) = 0, (33)

∆

[

1

Jc
(∆h+ 2aJch)

]

= 0, (34)

respectively.
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In the following result we present a way to obtain DRMC-surfaces and HDRMC-
surfaces in M

3
(c) using two holomorphic functions.

Corollary 2. On the conditions of the Theorem33.

i) For n = 2, a = 1, c = ±1,

(1) the solutions of (3434) are given by h =
〈1, A〉+ 〈u,B〉

1 + c |u|2
, where A,B are holomor-

phic functions,

(2) the solutions of (3333) are given by h =
〈1, A〉+ 〈u,B〉

1 + c |u|2
, where A is a holomorphic

function and B is a holomorphic function such that B =

∫

(cA′u− cA+ ic1) du,

c1 is a real constant.

ii) For n = 2, a ∈ R, a 6= 0, c = 0,

(3) some solutions of (3333) are given by

h(u) =
ΩC1C2

a
e
−
(

c1−2ac2
2|z1|2

)

(b1u1+a1u2)
sin

(

Ω

2|z1|2
(a1u1 − b1u2)

)

, (35)

(4) some solutions of (3434) are given by

h(u) = − 1

2a2|z1|2
e−2α(b1u1+a1u2)

(

C2C3K1e
α(b1u1+a1u2)(a1 cos(α(a1u1 − b1u2))

+b1 sin(α(a1u1 − b1u2))) + C1C3K2e

(

α+ Ω
2|z1|2

)

(a1 cos(β(a1u1 − b1u2))

+b1 sin(β(a1u1 − b1u2))) + 4|z1|2C1C2e
Ω

2|z1|2
(b1u1+a1u2)× (36)

sin

(

Ω

2|z1|2
(a1u1 − b1u2)

))

,

where

c1, c2, C1, C2, C3 ∈ R, z1 = a1 + ib1 ∈ C,Ω =
√

c21 + 4a(2|z1|2 − c1c2 + ac22),

α = c1−2ac2+Ω
4|z1|2 , β = c1−2ac2−Ω

4|z1|2 , K1 = a(4|z1|2 − 2c1c2) + c1(c1 − Ω),

K2 = a(4|z1|2 − 2c1c2) + c1(c1 + Ω).

Proof. i) We will show that the given a holomorphic function g, non-zero real con-
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stants r, s with k = rs and Ω(u) =
2
√
2|g′|

r + s|g|2 , the functions

h(u) =
〈1, A〉+ 〈g, B〉

r + s |g|2
, (37)

are solutions of the two-dimensional generalized Helmholtz equation (2626), where A

and B are holomorphic functions.
Moreover, (3737) are solutions of the two-dimensional Helmholtz equation (2525) if the
holomorphic functions A and B satisfy

B(u) =
1

r

∫

(sgA′ − sg′A+ ic1g
′)du. (38)

Consider
h =

f

T
, where T = r + s|g|2. (39)

Calculating the Laplacian of h we have

∆h =
∆f

T
+ 2

〈

∇f,∇
(

1

T

)〉

+ f∆

(

1

T

)

.

Using the expression of T given in (3939), we get

∆h =
∆f

T
− 4s

〈

∇f,
gg′

T 2

〉

+ f

(

−4s|g′|2
T 2

+
8s2|gg′|2

T 3

)

=
∆f

T
− 4

〈

∇f,
gg′

T 2

〉

+ 4fs|g′|2
(

1

T 2
− 2r

T 3

)

.

This equation can be written as

T 2

|g′|2
(

∆h+
8rs|g′|2

T 2
h

)

= T
∆f

|g′|2 − 4s

〈

∇f,
g

g′

〉

+ 4sf. (40)

Thus, for Ω =
2
√
2|g′|

r + s|g|2 , the function h =
f

T
is a solution of the generalized

Helmholtz equation (2626), if and only if

∆

{

T
∆f

|g′|2 − 4s

〈

∇f,
g

g′

〉

+ 4sf

}

= T∆

(

∆f

|g′|2
)

= 0.
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On the other hand, the solutions of the equation ∆

(

∆f

|g′|2
)

= 0 are given by f =

〈1, A〉+ 〈g, B〉, where A,B are holomorphic functions. Thus, we get (3737).
Also, it is easy to show that (4040) is equivalent to

〈

1, r
B′

g′
− s

gA′

g′
+ sA

〉

= 0.

From this expression we obtain

r
B′

g′
− s

gA′

g′
+ sA = ic1.

Hence, we get (3838). Therefore, (1) and (2) follows from (3333)-(3838), for r = a = 1,

s = c = ±1, g(u) = u and Ω(u) =
2
√
2

1 + c |u|2
.

ii) We observe that for a = 0, the harmonic and biharmonic functions are solutions
of (3333) and (3434), respectively.
For a 6= 0, we will find solutions of (3333) and (3434) of the form

h = 〈A,B〉, (41)

where A,B are holomorphic functions.
Calculating the Laplacian of (4141), we get ∆h = 4〈A′, B′〉, using this expression in
(3333) it follows that

〈

1,
aB

A

〉

+

〈

2A′

A
,
B′

A

〉

= 0.

By Lemma 11 we obtain

B = −2z1
a

A′ +
ic1

a
A, (42)

B′ = 2ic2A
′ + z1A. (43)

From (4242)

B′ = −2z1
a

A′′ +
ic1

a
A′. (44)

Thus, from (4343) and (4444) we obtain

2z1A
′′ + i(2ac2 − c1)A

′ + az1A = 0,
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whose solution is given by

A(u) = C1e
i
(

c1−2ac2−Ω
4z1

)

u
+ C2e

i
(

c1−2ac2+Ω
4z1

)

u
. (45)

Using (4545) in (4242) we obtain

B(u) =
i

2a

(

C1(c1 + 2ac2 + Ω)e
i
(

c1−2ac2−Ω
4z1

)

u
+ C2(c1 + 2ac2 − Ω)e

i
(

c1−2ac2+Ω
4z1

)

u

)

.

(46)
Thus, (3535) follows from (4141), (4545) and (4646).
Similarly, calculating the Laplacian of (4141) and using (3434) we obtain

〈

1,
aB′

A′

〉

+

〈

2A′′

A
,
B′′

A′

〉

= 0.

By Lemma 11 we obtain

B′ = −2z1
a

A′′ +
ic1

a
A′, (47)

B′′ = 2ic2A
′′ + z1A

′. (48)

From (4747)

B′′ = −2z1
a

A′′′ +
ic1

a
A′′. (49)

Thus, from (4848) and (4949) we obtain

2z1A
′′′ + i(2ac2 − c1)A

′′ + az1A
′ = 0,

whose solution is given by

A(u) = −4iz1

(

C1

c1 − 2ac2 − Ω
e
i
(

c1−2ac2−Ω
4z1

)

u
+

C2

c1 − 2ac2 + Ω
e
i
(

c1−2ac2+Ω
4z1

)

u

)

+ C3.

(50)
Using (5050) in (4747) and integrating, we obtain

B(u) = − i

2a2z1

(

C1(4a|z1|2 − 2ac1c2 + c1(c1 + Ω))e
i
(

c1−2ac2−Ω
4z1

)

u (51)

+C2(4a|z1|2 − 2ac1c2 + c1(c1 − Ω))e
i
(

c1−2ac2+Ω
4z1

)

u

)

.
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Thus, (3636) follows from (4141), (5050) and (5151). Therefore, (3) and (4) are proven.
The proof is complete.

The following result classifies the DRMC-hypersurfaces of rotation.

Corollary 3. Let Σ be a rotation spherical hypersurface of M
n+1

(c) given by The-

orem 33. Σ is a DRMC-hypersurface if and only if h is given by

(1) for a = 0, c = 0,

h(u) =







C1 + 2C2 ln |u|, if n = 2,
2C1|u|2−n

2− n
+ c2, if n 6= 2,

(2) for a = 0, c = ±1,

h(u) =















C1 + 2C2 ln |u|, if n = 2,

C1

(

|u|2 − 1

|u|2
)

+ 4cC1 ln |u|+ C2, if n = 4,

C1(−c)
n−2
2 Beta

(

−c|u|2, 2−n
2
, n− 1

)

+ C2, if n 6= 2, n 6= 4,

(3) for a 6= 0, c = 0,

h(u) = |u|1−n

2

(

C1BesselJ
(n

2
− 1,

√
an|u|

)

+ C2BesselY
(n

2
− 1,

√
an|u|

))

,

(4) for a 6= 0, c = ±1, n = 2,

h(u) = C1(1 + c|u|2) 1−
√
8ac+1
2 HgF1

(

1−
√

8ac+ 1)

2
,
1−

√

8ac+ 1)

2
,

1−
√
8ac+ 1, 1 + c|u|2

)

+ C2(1 + c|u|2) 1+
√
8ac+1
2 HgF1

(

1 +
√
8ac+ 1

2
,

1 +
√
8ac+ 1

2
, 1 +

√
8ac+ 1, 1 + c|u|2

)

,
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(5) for a 6= 0, c = 1, n = 4,

h(u) = C1(1 + |u|2) 3−
√
9+16a
2 HgF1

(

3−
√
9 + 16a

2
,
1−

√
9 + 16a

2
,

1−
√
9 + 16a, 1 + |u|2

)

+ C2(1 + |u|2) 3+
√
9+16a
2 HgF1

(

1 +
√
9 + 16a

2
,

3 +
√
9 + 16a

2
, 1 +

√
9 + 16a, 1 + |u|2

)

,

(6) for a 6= 0, c = −1, n = 4,

h(u) = C1(1− |u|2) 3−
√
9−16a
2 HgF1

(

3−
√
9− 16a

2
,
1−

√
9− 16a

2
,

1−
√
9− 16a, 1− |u|2

)

+ C2(1− |u|2) 3+
√
9−16a
2 HgF1

(

3 +
√
9− 16a

2
,

1 +
√
9− 16a

2
, 1 +

√
9− 16a, 1− |u|2

)

,

(7) for a 6= 0, c = ±1, n 6= 2, n 6= 4,

h(u) = (1 + c|u|2)
n−1−

√
(n−1)2+4acn

2

(

C1HgF1

(

1−
√

(n− 1)2 + 4acn

2
,

n− 1−
√

(n− 1)2 + 4acn

2
,
n

2
,−c|u|2

)

+ C2|u|2−n×

HgF1

(

1−
√

(n− 1)2 + 4acn

2
,
3− n−

√

(n− 1)2 + 4acn

2
,

4− n

2
,−c|u|2

))

,

where HgF1 = Hypergeometric2F1.

Proof. From Theorem 4.17 in [1010], we get that for n ≥ 2, h is a radial function i.e.
h(u) = f(t), t = |u|2.
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Differentiating the functions h and Jc, we obtain

∆h = 4tf ′′(t) + 2nf ′(t), ∇h = 2uf ′(t), ∇Jc =







0, if c = 0,

− 16cu

(1 + ct)3
, if c = ±1.

Using these expressions in (3131) we obtain

4tf ′′(t) + 2nf ′(t) + anf(t) = 0, for c = 0, (52)

2tf ′′(t) +
(n+ ct(4− n))f ′(t)

1 + ct
+

2anf(t)

(1 + ct)2
= 0, for c = ±1. (53)

Now we will find the solutions of equations (5252) and (5353).
Case: a = 0.
The solutions of (5252) are given by
for n = 2

f(t) = C1 + C2 ln t,

for n 6= 2

f(t) =
2C1t

2−n

2

2− n
+ C2.

The solutions of (5353) are given by
for n = 2

f(t) = C1 + C2 ln t,

for n = 4

f(t) = C1

(

t− 1

t

)

+ 2cC1 ln t+ C2,

for n 6= 2, n 6= 4

f(t) = C1(−c)
n−2
2 Beta

(

−ct,
2− n

2
, n− 1

)

+ C2.

Case: a 6= 0.
The solutions of (5252) are given by

f(t) = t
1
2
−n

4

(

C1BesselJ
(n

2
− 1,

√
ant
)

+ C2BesselY
(n

2
− 1,

√
ant
))

.

The solutions of (5353) are given by
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for n = 2

f(t) = C1(1 + ct)
1−

√
8ac+1
2 HgF1

(

1−
√

8ac+ 1)

2
,
1−

√

8ac+ 1)

2
,

1−
√
8ac+ 1, 1 + ct

)

+ C2(1 + ct)
1+

√
8ac+1
2 ×

HgF1

(

1 +
√
8ac+ 1

2
,
1 +

√
8ac+ 1

2
, 1 +

√
8ac+ 1, 1 + ct

)

,

for n = 4, c = 1

f(t) = C1(1 + t)
3−

√
9+16a
2 HgF1

(

3−
√
9 + 16a

2
,
1−

√
9 + 16a

2
,

1−
√
9 + 16a, 1 + t

)

+ C2(1 + t)
3+

√
9+16a
2 ×

HgF1

(

1 +
√
9 + 16a

2
,
3 +

√
9 + 16a

2
, 1 +

√
9 + 16a, 1 + t

)

,

for n = 4, c = −1

f(t) = C1(1− t)
3−

√
9−16a
2 HgF1

(

3−
√
9− 16a

2
,
1−

√
9− 16a

2
,

1−
√
9− 16a, 1− t

)

+ C2(1− t)
3+

√
9−16a
2 ×

HgF1

(

3 +
√
9− 16a

2
,
1 +

√
9− 16a

2
, 1 +

√
9− 16a, 1− t

)

,

for n 6= 2, n 6= 4

f(t) = (1 + ct)
n−1−

√
(n−1)2+4acn

2

(

C1HgF1

(

1−
√

(n− 1)2 + 4acn

2
,

n− 1−
√

(n− 1)2 + 4acn

2
,
n

2
,−ct

)

+ C2t
2−n

2 ×

HgF1

(

1−
√

(n− 1)2 + 4acn

2
,
3− n−

√

(n− 1)2 + 4acn

2
,

4− n

2
,−ct

))

.
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The proof is complete.

Remark 3. From Theorem 33, in the case of HDRMC-hypersurfaces of rotation, the
equation (3232) is equivalent to

8t2f (4)(t) + 8(n+ 2)tf ′′′(t) + 2n(n+ 2 + at)f ′′(t) + an2f(t) = 0, if c = 0,(54)

4t2(1 + ct)2f (4)(t) +
(

32t3 + 4ct2(n+ 10) + 4t(n+ 2)
)

f ′′′(t) (55)

+
(

(56 + 2n− n2)t2 + 4(8c+ an+ 3cn)t+ n2 + 2n
)

f ′′(t)

+
(

2(4− n)(n+ 2)t+ 2an2 + 4cn
)

f ′(t) +
8a(1− n)tf(t)

(1 + ct)2
= 0, if c = ±1.

The following result classifies the HDRMC-hypersurfaces of rotation for c = 0

i.e. when M
n+1

(0) = R
n+1.

Corollary 4. Let Σ be a rotation spherical hypersurface of M
n+1

(0) given by The-

orem 33. Σ is a HDRMC-hypersurface if and only if h is given by

(1) for a = 0,

h(u) =



































(C4 − C2)|u|2 + 2(|u|2C2 − C1) ln |u|+ C3, if n = 2,

C4|u|2 −
(3C2 −

√
15C1) cos

(√
15 ln |u|

)

+ (
√
15C2 + 3C1) sin

(√
15 ln |u|

)

24|u|
+C3, if n = 4,
4|u|2−n ((n− 4)C1 + nC2|u|2)

n(n− 2)(n− 4)
+ C4|u|2 + C3, if n 6= 2, n 6= 4,

(2) for a 6= 0,
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h(u) =



























































































2aC1 ln |u| − 2C2BesselJ
(

0,
√
2a|u|

)

− 4C3BesselY
(

0,
√
2a|u|

)

+ 2C2

a
+C4, if n = 2,

−2C3MeijerG
({

{0}, {−1
2
}
}

,
{

{0, 0}, {−1,−1
2
}
}

,
√
a|u|, 1

2

)

−C2BesselI
(

1, 2
√
−a|u|

)

√
−a|u| − C1

|u|2 + C2, if n = 4,

|u|−n

a2n

(

22−n(an|u|2)n

4C3Gamma
(

n
2

)

Gamma
(

n+2
2

)

(

2(an|u|2)n

4 − 2
n

2
√
an|u|×

BesselJ
(

n−2
2
,
√
an|u|

)

Gamma
(

n
2

))

− a|u|2
n− 2

(2anC1 − 4C2(n− 2)

+C2n(n− 2)2Gamma
(

−n
2

)

HgF1R
(

4−n
2
,−an|u|2

4

)))

+ C4,

if n 6= 2, n 6= 4,

where HgF1R = Hypergeometric0F1Regularized.

Proof. Similarly to the proof of Corollary 33, from Theorem 4.17 in [1010], we get that
for n ≥ 2, h is a radial function i.e. h(u) = f(t), t = |u|2.
On the other hand, from Remark 33 the expression (3232) is equivalent to (5454), thus,
we will find the solutions of this equation.
The solutions of equation (5454) are given by
for a = 0

f(t) =







































(C4 − C2)t+ (tC2 − C1) ln t+ C3, if n = 2,

C4t−
(3C2 −

√
15C1) cos

(√
15 ln t
2

)

+ (
√
15C2 + 3C1) sin

(√
15 ln t
2

)

24
√
t

+C3, if n = 4,

4t
2−n

2 ((n− 4)C1 + nC2t)

n(n− 2)(n− 4)
+ C4t+ C3, if n 6= 2, n 6= 4,
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for a 6= 0

f(t) =











































































aC1 ln t− 2C2BesselJ
(

0,
√
2at
)

− 4C3BesselY
(

0,
√
2at
)

+ 2C2

a
+C4, if n = 2,

−2C3MeijerG
({

{0}, {−1
2
}
}

,
{

{0, 0}, {−1,−1
2
}
}

,
√
at, 1

2

)

−C2BesselI(1,2
√
−at)√

−at
− C1

t
+ C2, if n = 4,

t−
n

2

a2n

(

22−n(ant)
n

4C3Gamma
(

n
2

)

Gamma
(

n+2
2

)

(

2(ant)
n

4 − 2
n

2

√
ant×

BesselJ
(

n−2
2
,
√
ant
)

Gamma
(

n
2

))

− at
n−2

(2anC1 − 4C2(n− 2)

+C2n(n− 2)2Gamma
(

−n
2

)

HgF1R
(

4−n
2
,−ant

4

)))

+ C4,

if n 6= 2, n 6= 4.

The proof is complete.

4 Conclusions

The DRMC-hypersurfaces and the HDRMC-hypersurfaces in space forms M
n+1

(c),

c = −1, 0, 1 generalize the Weingarten hypersurfaces of the spherical type studied by
[1010]. In the case n = 2, using two holomorphic functions a way to construct DRMC-
surfaces and HDRMC-surfaces in M

3
(c) is obtained. Finally, as a first step, we clas-

sify the DRMC-hypersurfaces of rotation in M
n+1

(c) and the HDRMC-hypersurfaces
of rotation in R

n+1. It would be interesting to study DRMC-hypersurfaces and
HDRMC-hypersurfaces with some geometric properties such as embeddededness,
completeness. In this sense, future research is being carried out.
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