Hypersurfaces with radial mean curvature in space forms

Hipersuperfícies com curvatura média radial em formas espaciais

Carlos M. C. Riveros*
Armando M. V. Corro ${ }^{\dagger}$
Edwin O. S. Reyes ${ }^{\ddagger}$

Abstract

In this paper, we study two classes of hypersurfaces, namely, the DRMChypersurfaces and the HDRMC-hypersurfaces in space forms $\bar{M}^{n+1}(c), c=-1,0,1$, these classes include the Weingarten hypersurfaces of the spherical type obtained in [10]. For $n=2$, we present a way to obtain DRMC-surfaces and HDRMC-surfaces in $\bar{M}^{3}(c)$ using two holomorphic functions. Also, we classify the DRMC-hypersurfaces of rotation in $\bar{M}^{n+1}(c)$ and the HDRMC-hypersurfaces of rotation in \mathbb{R}^{n+1}.

Keywords: Weingarten hypersurfaces. radial mean curvature. Helmholtz equation.

Resumo: Neste artigo, estudamos duas classes de hipersuperficies, a saber, as DRMChipersuperfícies e as HDRMC-hipersuperfícies em formas espaciais $\bar{M}^{n+1}(c), c=-1,0,1$, essas classes incluem as hipersuperfícies Weingarten de tipo esférico obtidas em [10]. Para $n=2$, apresentamos uma forma de obter DRMC-superfícies e HDRMC-superfícies em $\bar{M}^{3}(c)$ usando duas funções holomorfas. Também classificamos as DRMC-hipersuperfícies de rotação em $\bar{M}^{n+1}(c)$ e as HDRMC-hipersuperfícies de rotação em \mathbb{R}^{n+1}.

Palavras-chave: Hipersuperfícies Weingarten. curvatura média radial. equação de Helmholtz.

[^0]
1 Introduction

The surfaces $M \subset \mathbb{R}^{3}$ satisfying a functional relation of the form $W(H, K)=0$, where H and K are the mean and Gaussian curvatures of the surface M, respectively, are called Weingarten surfaces. Examples of Weingarten surfaces are the surfaces of revolution and the surfaces of constant mean or Gaussian curvature. In [7], the authors study an important class of surfaces satisfying a linear relation of the form

$$
a H+b K+c=0
$$

where $a, b, c \in \mathbb{R}$ and $a^{2}+b^{2} \neq 0$. These surfaces are called linear Weingarten surfaces. The paper [6], is devoted to the integrability of linear Weingarten surfaces.

Corro, in [2] presented a way of parameterizing surfaces as envelopes of a congruence of spheres in which an envelope is contained in a plane and with radius function h associated with a hydrodynamic type system. As an application, it studies the surfaces in hyperbolic space \mathbb{H}^{3} satisfying the relation

$$
2 a c h h^{\frac{2(c-1)}{c}}(H-1)+\left(a+b-a c h^{\frac{2(c-1)}{c}}\right) K=0
$$

where $a, b, c \in \mathbb{R}, a+b \neq 0, c \neq 0, H$ is the mean curvature and K is the Gaussian curvature. This class of surfaces includes the Bryant surfaces and the flat surfaces of the hyperbolic space and are called generalized Weingarten surfaces of Bryant type.

In [3] the authors study the surfaces M in the hyperbolic space \mathbb{H}^{3} satisfying the relation

$$
2(H-1) e^{2 \mu}+K\left(1-e^{2 \mu}\right)=0
$$

where μ is a harmonic function with respect to the quadratic form $\sigma=-K I+2(H-$ 1) $I I, I$ and $I I$ are the first and the second quadratic form of M. These surfaces are called Generalized Weingarten surfaces of harmonic type.

In [5], the authors study a class of oriented hypersurfaces M in hyperbolic space $(n+1)$-dimensional that satisfy a Weingarten relation in the form

$$
\sum_{r=0}^{n}(c-n+2 r)\binom{n}{r} H_{r}=0
$$

where c is a real constant and H_{r} is the rth mean curvature of the hypersurface M. They show that this class of hypersurfaces is characterized by a harmonic application
derived from the two hyperbolic Gauss map. Looking these hypersurfaces as orthogonal to a congruence of geodesics, they also show the relation of such hypersurfaces with solutions of the equation $\Delta u+k u^{\frac{n+2}{n-2}}=0$, where $k \in\{-1,0,1\}$.

In [9], the author present a way to parameterize hypersurfaces as congruence of spheres in which an envelope is contained in a hyperplane. Using this parametrization is presented a generalization of the surfaces of the spherical type (Laguerre minimal surfaces) studied in [8], namely the Weingarten hypersurfaces of the spherical type, i.e. the oriented hypersurfaces of the Euclidean space $M \subset \mathbb{R}^{n+1}$ satisfying a Weingarten relation of the form

$$
\sum_{r=1}^{n}(-1)^{r+1} r f^{r-1}\binom{n}{r} H_{r}=0
$$

where $f \in C^{\infty}(M ; \mathbb{R})$ and H_{r} is the rth mean curvature of M. Later, Reyes and Riveros [10], generalize the results obtained by [9] in space forms.

In this paper, we study two classes of hypersurfaces, namely, the DRMC-hypersurfaces and the HDRMC-hypersurfaces in space forms $\bar{M}^{n+1}(c), c=-1,0,1$, defined as: An orientable hypersurface $M \subset \mathbb{R}^{n+1}, n \geq 2$, is called a hypersurface with radial mean curvature which depends on the distance and radius functions (in short, DRMC-hypersurface) if satisfy

$$
\frac{H_{R}}{1-d}+(a-c) h=0, a \in \mathbb{R}
$$

An orientable hypersurface $M \subset \mathbb{R}^{n+1}, n \geq 2$, is called a hypersurface with radial mean curvature of harmonic type (in short HDRMC-hypersurface) if satisfy

$$
\Delta\left(\frac{H_{R}}{1-d}+(a-c) h\right)=0
$$

where H_{R} is the radial mean curvature.
We observe that when $a=c=0$ and $H_{R}=0$ we obtain the Weingarten hypersurfaces of the spherical type estudied by Machado in [9], also, when $a=c$ and $H_{R}=0$ we obtain the Weingarten hypersurfaces of the spherical type estudied by Reyes and Riveros in [10]. For $n=2$ we present a way to obtain DRMC-surfaces and HDRMC-surfaces in $\bar{M}^{3}(c)$ using two holomorphic functions. Also, we classify the DRMC-hypersurfaces of rotation in $\bar{M}^{n+1}(c)$ and the HDRMC-hypersurfaces of
rotation in \mathbb{R}^{n+1}.

2 Preliminaries

Let $\bar{M}^{n+1}(c)$ be, the simply connected space form of sectional curvature $c=-1,1,0$. $\bar{M}^{n+1}(c)$ will denote the $(\mathrm{n}+1)$-dimensional hyperbolic space \mathbb{H}^{n+1}, if $c=-1$, the Euclidean space \mathbb{R}^{n+1} when $c=0$ or the sphere \mathbb{S}^{n+1}, if $c=1$.
Let $U \subset \mathbb{R}^{n}$ be an open set of \mathbb{R}^{n} such that $u=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in U$. The partial derivatives of $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, with respect to $u_{i}, 1 \leq i \leq n$, will be denoted by $f_{, i}$.
We denote by \mathbb{L}^{n+2} the space of (n+2)-tuples $u=\left(u_{1}, u_{2}, \ldots, u_{n+2}\right) \in \mathbb{R}^{n+2}$ with the Lorentzian metric $\langle u, v\rangle=\sum_{i=1}^{n+1} u_{i} v_{i}-u_{n+2} v_{n+2}$, where $v=\left(v_{1}, v_{2}, \ldots, v_{n+2}\right)$ and we consider the hyperbolic space \mathbb{H}^{n+1} as a hypersurface of \mathbb{L}^{n+2}, namely,

$$
\mathbb{H}^{n+1}=\left\{u \in \mathbb{L}^{n+2} ;\langle u, u\rangle=-1, u_{n+2}>0\right\} .
$$

Also, we consider the sphere \mathbb{S}^{n+1} as a hypersurface of \mathbb{R}^{n+2} with the Euclidean metric, namely,

$$
\mathbb{S}^{n+1}=\left\{u \in \mathbb{R}^{n+2} ;\langle u, u\rangle=1\right\}
$$

Definition 1. Let M be a hypersurface of $\bar{M}^{n+1}(c)$. We say that M is orientable, if there exist a unit vector field N normal to $T_{p} M$, for all $p \in M . N$ is known as Gauss map of M. In local coordinates,

$$
N_{, i}=\sum_{j=1}^{n} W_{i j} X_{, j}, 1 \leq i \leq n
$$

where X is a parametrization of M. The matrix $W=\left(W_{i j}\right)$ is known as Weingarten matrix of M.

Definition 2. The mean curvature and the Gauss-Kronecker curvature of M are given by

$$
H=\frac{1}{n} \sum_{i=1}^{n} k_{i}, K=\prod_{i=1}^{n} k_{i},
$$

where k_{1}, \ldots, k_{n} are the principal curvatures of M.

Definition 3. The rth-mean curvature H_{r} of M is defined by

$$
H_{r}=\frac{S_{r}(W)}{\binom{n}{r}},
$$

where, for intergers $0 \leq r \leq n, S_{r}(W)$, is defined by

$$
\begin{aligned}
& S_{0}(W)=1, \\
& S_{r}(W)=\sum_{1 \leq i_{1}<\ldots<i_{r} \leq n} k_{i_{1}} \ldots k_{i_{r}} .
\end{aligned}
$$

Definition 4. Let M be a hypersurface of $\bar{M}^{n+1}(c), n \geq 2 . M$ is a Weingarten hypersurface of the spherical type in $\bar{M}^{n+1}(c)$, if the rth mean curvatures of M in $\bar{M}^{n+1}(c)$ satisfy the equation

$$
\sum_{r=1}^{n}(-1)^{r-1} r f^{r-1} H_{r}=0
$$

for some function $f \in C^{\infty}(M, \mathbb{R})$.
From now on, we will consider e_{c} given by

$$
e_{c}=\left\{\begin{array}{l}
(0,0, \ldots, 0,1,0) \in \mathbb{L}^{n+2}, \text { if } c=-1 \\
(0,0, \ldots, 0,1) \in \mathbb{R}^{n+1}, \text { if } c=0 \\
(0,0, \ldots, 0,0,1) \in \mathbb{R}^{n+2}, \text { if } c=1
\end{array}\right.
$$

Definition 5. Let M be an orientable hypersurface in $\bar{M}^{n+1}(c)$ and N the unit normal vector field of M in $\bar{M}^{n+1}(c)$, such that $N(p) \neq e_{c}, \forall p \in M$. We define the distance and radius functions $d, h: M \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
d(p)=\left\langle N(p), e_{c}\right\rangle, \quad h(p)=\frac{\left\langle p, e_{c}\right\rangle}{1-d}, p \in M \tag{1}
\end{equation*}
$$

and the radial curvature \bar{k}_{i} of M as

$$
\begin{equation*}
\bar{k}_{i}=\frac{k_{i}}{h k_{i}-1}, 1 \leq i \leq n, \tag{2}
\end{equation*}
$$

with $h k_{i}-1 \neq 0, \forall 1 \leq i \leq n$ and k_{i} are the principal curvatures of $M \subset \bar{M}^{n+1}(c)$.

Definition 6. We define the radial mean curvature H_{R} of the hypersurface M in $\bar{M}^{n+1}(c)$ as

$$
\begin{equation*}
H_{R}=\frac{1}{n} \sum_{i=1}^{n} \bar{k}_{i} . \tag{3}
\end{equation*}
$$

We consider $M^{n}(c)$ a hypersurface of $\bar{M}^{n+1}(c)$, such that $M^{n}(c)=\mathbb{H}^{n}$, if $c=-1$, $M^{n}(c)=\mathbb{R}^{n}$ if $c=0$ or $M^{n}(c)=\mathbb{S}^{n}$, if $c=1$, with unit normal vector field $N(p)=e_{c}, \forall p \in M^{n}(c)$.
Let $Y: U \rightarrow M^{n}(c)$ be a local orthogonal parametrization of $M^{n}(c)$. If $L_{i j}=$ $\left\langle Y_{, i}, Y_{, j}\right\rangle, 1 \leq i, j \leq n$, then $L_{i i} \neq 0$ and $L_{i j}=0$ for $i \neq j$. The Christoffel symbols of $L_{i j}$ are given by

$$
\begin{equation*}
\Gamma_{i j}^{m}=0, \text { for distinct } i, j, m, \Gamma_{i j}^{j}=\frac{L_{j j, i}}{2 L_{j j}}, \text { for all } i, j, \Gamma_{i i}^{j}=-\frac{L_{i i, j}}{2 L_{j j}} \text {, for } i \neq j \tag{4}
\end{equation*}
$$

We consider the sphere $\mathbb{S}^{n+1} \subset \mathbb{R}^{n+2}, e_{1}=(0,0, \ldots, 0,1)$ and $-e_{1}=(0,0, \ldots, 0,-1)$ the north pole and south pole of \mathbb{S}^{n+1}, respectively. The stereographic projection $P_{-}: \mathbb{S}^{n+1}-\left\{-e_{1}\right\} \rightarrow \mathbb{R}^{n+1}$ and $P_{+}: \mathbb{S}^{n+1}-\left\{e_{1}\right\} \rightarrow \mathbb{R}^{n+1}$ are diffeomorphism given by

$$
\begin{equation*}
P_{-}(q)=\frac{q-\left\langle q, e_{1}\right\rangle e_{1}}{1+\left\langle q, e_{1}\right\rangle}, P_{+}(q)=\frac{q-\left\langle q, e_{1}\right\rangle e_{1}}{1-\left\langle q, e_{1}\right\rangle}, q \in \mathbb{S}^{n+1} \tag{5}
\end{equation*}
$$

Therefore, the inverse mapping P_{-}^{-1} and P_{+}^{-1} are given by

$$
\begin{equation*}
P_{-}^{-1}(p)=\frac{(2 p, 1-\langle p, p\rangle)}{1+\langle p, p\rangle}, P_{+}^{-1}(p)=\frac{(2 p,\langle p, p\rangle-1)}{1+\langle p, p\rangle}, p \in \mathbb{R}^{n+1} . \tag{6}
\end{equation*}
$$

We consider $\mathbb{H}^{n+1} \subset \mathbb{L}^{n+2}$ and we define

$$
\begin{align*}
P: & \mathbb{H}^{n+1} \rightarrow \mathbb{R}^{n+1} \tag{7}\\
& u \rightarrow P(u),
\end{align*}
$$

where $P(u)$ is the intersection of the hyperplane

$$
\mathbb{R}^{n+1}=\left\{\left(u_{1}, u_{2}, \ldots, u_{n+1}, u_{n+2}\right) \subset \mathbb{R}^{n+2} ; u_{n+2}=0\right\}
$$

with the line that passes through the points u and $(0,0, \ldots, 0,-1) \in \mathbb{R}^{n+2} . P$ is known as the hyperbolic stereographic projection.

The following result was obtained in [1].

Proposition 1. Let $P: \mathbb{H}^{n+1} \rightarrow \mathbb{R}^{n+1}$ be given by (7). Then P is a diffeomorphism of \mathbb{H}^{n+1} on $B^{n+1}(1)=\left\{u \in \mathbb{R}^{n+1} ;|u|<1\right\}$.
Therefore, $P^{-1}: B^{n+1}(1) \rightarrow \mathbb{H}^{n+1}$ given by

$$
\begin{equation*}
P^{-1}(u)=\frac{1}{1-\langle u, u\rangle}(2 u, 1+\langle u, u\rangle), u \in B^{n+1}(1) \tag{8}
\end{equation*}
$$

is a parametrization of $\mathbb{H}^{n+1} \subset \mathbb{L}^{n+2}$.

The following results were obtained in [10].

Theorem 1. Consider Σ an orientable hypersurface of $\bar{M}^{n+1}(c), N$ the unit normal vector field of Σ in $\bar{M}^{n+1}(c)$ such that $N(p) \neq e_{c}, \forall p \in \Sigma, h: \Sigma \rightarrow \mathbb{R}$ given by (1) and $X: U \rightarrow \Sigma$ a local parametrization of $p \in \Sigma$. Then, there exist a local parametrization $Y: U \rightarrow M^{n}(c)$, such that

$$
\begin{equation*}
X(u)=Y(u)+h(u)\left[e_{c}-N(u)\right], u \in U . \tag{9}
\end{equation*}
$$

If Y is a local orthogonal parametrization of $M^{n}(c)$, then

$$
\begin{gather*}
X=Y-\frac{2 h}{S}\left(\sum_{i=1}^{n} \frac{h_{, i}}{L_{i i}} Y_{, i}-e_{c}+c h Y\right), \tag{10}\\
N=\frac{2}{S}\left(\sum_{i=1}^{n} \frac{h_{, i}}{L_{i i}} Y_{, i}-e_{c}+c h Y\right)+e_{c} \tag{11}
\end{gather*}
$$

where

$$
\begin{equation*}
S=\sum_{i=1}^{n} \frac{\left(h_{, i}\right)^{2}}{L_{i i}}+c h^{2}+1 \neq 0 \tag{12}
\end{equation*}
$$

The first, second and third fundamental forms of Σ in $\bar{M}^{n+1}(c)$, are given by

$$
\begin{align*}
I=\left\langle X_{, i}, X_{, j}\right\rangle & =L_{i j}-\frac{2 h}{S}\left(V_{j i} L_{i i}+V_{i j} L_{j j}\right)+\frac{4 h^{2}}{S^{2}} \sum_{k=1}^{n} V_{i k} V_{j k} L_{k k}, \tag{13}\\
I I=-\left\langle N_{, i}, X_{, j}\right\rangle & =\frac{4 h}{S^{2}} \sum_{k=1}^{n} V_{i k} V_{j k} L_{k k}-\frac{2}{S} V_{j i} L_{i i}, \tag{14}\\
I I I=\left\langle N_{, i}, N_{, j}\right\rangle & =\frac{4}{S^{2}} \sum_{k=1}^{n} V_{i k} V_{j k} L_{k k}, \tag{15}
\end{align*}
$$

respectively, where

$$
\begin{equation*}
V_{i j}=\frac{1}{L_{j j}}\left(h_{, i j}-\sum_{l=1}^{n} \Gamma_{i j}^{l} h_{, l}\right)+c h \delta_{i j}, \quad 1 \leq i, j \leq n, \tag{16}
\end{equation*}
$$

and $\Gamma_{i j}^{l}$ are the Christoffel symbols of the metric $L_{i j}=\left\langle Y_{, i}, Y_{, j}\right\rangle, 1 \leq i, j \leq n$. The Weingarten matrix $W=\left(W_{i j}\right)$ is given by

$$
\begin{equation*}
W=2\left(S I_{n}-2 h V\right)^{-1} V, \tag{17}
\end{equation*}
$$

where I_{n} is the identity matrix and $V=\left(V_{i j}\right)$.
The condition of regularity of X is given by

$$
\begin{equation*}
\operatorname{det}\left(S I_{n}-2 h V\right) \neq 0 \tag{18}
\end{equation*}
$$

Conversely, given a local orthogonal parametrization $Y: U \rightarrow M^{n}(c) \subset \bar{M}^{n+1}(c)$, where U is a simply connected domain of \mathbb{R}^{n} and a differentiable function $h: U \rightarrow \mathbb{R}$. Then (10) is a hypersurface of \bar{M}^{n+1} (c) with Gauss map given by (11) and (12)-(18) are satisfied.

Proposition 2. Let $X: U \subset \mathbb{R}^{n} \rightarrow \Sigma \subset \bar{M}^{n+1}(c)$ be a parametrization of a hypersurface Σ given by (10). The following statements are equivalent
(1) X is parametrized by lines of curvature.
(2) $V_{i j}=0$, for $1 \leq i \neq j \leq n$.
(3) $N_{, i}=-k_{, i} X_{, i}$, for all $1 \leq i \leq n$, where

$$
\begin{equation*}
k_{i}=\frac{2 V_{i i}}{2 h V_{i i}-S}, \quad 1 \leq i \leq n \tag{19}
\end{equation*}
$$

are the principal curvatures of X.
Remark 1. From (19), the eigenvalues σ_{i} of the matrix V are given by

$$
\begin{equation*}
\sigma_{i}=\frac{S k_{i}}{2\left(h k_{i}-1\right)}, \quad 1 \leq i \leq n \tag{20}
\end{equation*}
$$

where k_{i} are the eigenvalues of the Weingarten matrix W.
From (20) we have that $\sigma_{i}=\frac{S}{2} \bar{k}_{i}$. Therefore,

$$
\begin{equation*}
\sum_{i=1}^{n} V_{i i}=\frac{n S}{2} H_{R} \tag{21}
\end{equation*}
$$

Let Y be a local orthogonal parametrization of $M^{n}(c) \subset \bar{M}^{n+1}(c)$ given by

$$
Y=\left\{\begin{array}{l}
P_{-}^{-1}, P_{+}^{-1}: \mathbb{R}^{n} \rightarrow \mathbb{S}^{n}, \text { if } c=1 \tag{22}\\
I: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, \text { if } c=0 \\
P^{-1}: B^{n}(1) \rightarrow \mathbb{H}^{n}, \text { if } c=-1
\end{array}\right.
$$

where P_{-}^{-1}, P_{+}^{-1} are given by (6), I is the identity function of \mathbb{R}^{n} and P^{-1} is given by (8). The metric L in the parametrization Y is given by $L_{i j}=\left\langle Y_{, i}, Y_{, j}\right\rangle=0$, if $1 \leq i \neq j \leq n$ and $L_{i i}=\left\langle Y_{, i}, Y_{, i}\right\rangle=J_{c}$, where

$$
J_{c}(u)=\left\{\begin{array}{l}
\frac{4}{(1+\langle u, u\rangle)^{2}}, u \in \mathbb{R}^{n}, \text { if } c=1 \tag{23}\\
1, u \in \mathbb{R}^{n}, \text { if } c=0 \\
\frac{4}{(1-\langle u, u\rangle)^{2}}, u \in B^{n}(1), \text { if } c=-1
\end{array}\right.
$$

From (4), the Christoffel symbols associated to $L_{i j}$ are given by

$$
\begin{equation*}
\Gamma_{i i}^{i}=\frac{J_{c, i}}{2 J_{c}}, \quad \Gamma_{i j}^{i}=\frac{J_{c, j}}{2 J_{c}}=-\Gamma_{i i}^{j}, \quad 1 \leq i \neq j \leq n . \tag{24}
\end{equation*}
$$

The following result can be found in [10].
Theorem 2. Let Σ be an orientable hypersurface of $\bar{M}^{n+1}(c)$ given by Theorem 1 where Y is the local orthogonal parametrization of $M^{n}(c) \subset \bar{M}^{n+1}(c)$ given by (22). Σ is a rotation spherical hypersurface of $\bar{M}^{n+1}(c)$ if and only if h is a radial function.

In [4], is introduced the generalized Helmholtz equation and present explicit solutions to this generalized Helmholtz equation, these solutions depend on three holomorphic functions.
The two-dimensional Helmholtz equation for $h: U \subset \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\Delta h(u)+k \Omega^{2}(u) h(u)=0 \tag{25}
\end{equation*}
$$

where $\Omega(u)$ indicates the wave number and k is a non-zero real constant.
Definition 7. The two-dimensional generalized Helmholtz equation for $h: U \subset$ $\mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined as

$$
\begin{equation*}
\Delta\left[\frac{1}{\Omega^{2}(u)}\left(\Delta h(u)+k \Omega^{2}(u) h(u)\right)\right]=0 \tag{26}
\end{equation*}
$$

where $\Omega(u)$ is a non-zero C^{2} function and k is a non-zero real constant.
The following Lemma is an equivalent version to Lemma 1 shown in [11].
Lemma 1. If $f_{1}, f_{2}, g: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic functions of $u=u_{1}+i u_{2}$, such that $\left\langle 1, f_{1}\right\rangle+\left\langle g, f_{2}\right\rangle=0$. Then $f_{1}=-\bar{z}_{1} g+i c_{1}, f_{2}=i c_{2} g+z_{1}$, where c_{i} are real constants and $z_{1} \in \mathbb{C}$.

3 Hypersurfaces with radial mean curvature

In this section, we study two classes of hypersurfaces, namely, the DRMC-hypersurfaces and the HDRMC-hypersurfaces.

Definition 8. We say that M is a hypersurface with radial mean curvature which depends on the distance and radius functions (in short DRMC-hypersurface) if the relation

$$
\begin{equation*}
\frac{H_{R}}{1-d}+(a-c) h=0, a \in \mathbb{R} \tag{27}
\end{equation*}
$$

is satisfied.
Also, we say that M is a hypersurface with radial mean curvature of harmonic type (in short HDRMC-hypersurface) if the relation

$$
\begin{equation*}
\Delta\left(\frac{H_{R}}{1-d}+(a-c) h\right)=0 \tag{28}
\end{equation*}
$$

is satisfied.
We observe that when $H_{R}=0, M$ is a Weingarten hypersurface of the spherical type in $\bar{M}^{n+1}(c)$ (see [10] for more details).

Proposition 3. Let Σ be an orientable hypersurface of $\bar{M}^{n+1}(c)$ given by Theorem 1, where Y is a local orthogonal parametrization of $M^{n}(c) \subset \bar{M}^{n+1}(c)$. Then Σ defines a hypersurface in $\bar{M}^{n+1}(c)$ satisfying

$$
\begin{equation*}
\Delta_{L} h+n c h=\frac{n}{1-d} H_{R} \tag{29}
\end{equation*}
$$

where L is the metric of $M^{n}(c)$ given by $L_{i j}=\left\langle Y_{, i}, Y_{, j}\right\rangle, 1 \leq i, j \leq n$ and Δ_{L} is the Laplacian operator with respect to the metric L.

Proof. Let Σ be an orientable hypersurface of $\bar{M}^{n+1}(c)$ given by Theorem 1. From (16) we obtain that the trace of the matrix V in terms of the Laplacian operator is given by

$$
\begin{equation*}
\sum_{i=1}^{n} V_{i i}=\Delta_{L} h+n c h . \tag{30}
\end{equation*}
$$

From (11), we get $d=\left\langle N(p), e_{c}\right\rangle=1-\frac{2}{S}$, hence, $S=\frac{2}{1-d}$. Using (30) in (21) we obtain (29). The proof is complete.

Corollary 1. Let Σ be an orientable hypersurface of $\bar{M}^{n+1}(c)$ given by Theorem 1 and $a \in \mathbb{R}$.
(1) Σ is DRMC-hypersurface if and only if $\triangle_{L} h+n a h=0$.
(2) Σ is HDRMC-hypersurface if and only if $\Delta\left(\triangle_{L} h+n a h\right)=0$.
(3) A DRMC-hypersurface Σ in $\bar{M}^{n+1}(c)$ with $h \neq 0$ is a Weingarten hypersurface of the spherical type if and only if $a=c$.

Proof. By Proposition 3, we get

$$
\triangle_{L} h+n c h=\frac{n}{1-d} H_{R} \Longleftrightarrow \triangle_{L} h+n a h=\frac{n}{1-d} H_{R}+n(a-c) h .
$$

Therefore,

$$
\triangle_{L} h+n a h=0 \Longleftrightarrow \frac{1}{1-d} H_{R}+(a-c) h=0,
$$

$$
\Delta\left(\triangle_{L} h+n a h\right)=0 \Longleftrightarrow \Delta\left(\frac{1}{1-d} H_{R}+(a-c) h\right)=0 .
$$

From these expressions we get (1) and (2).
(3) If Σ is a Weingarten hypersurface of the spherical type then $H_{R}=0$ and consequently $(a-c) h=0$, therefore $a=c$.
Conversely, if $a=c$ then $\frac{1}{1-d} H_{R}=0$. The proof is complete.
Theorem 3. Let Σ be an orientable hypersurface of $\bar{M}^{n+1}(c), n \geq 2$ given by Theorem 1 where Y is the local orthogonal parametrization of $M^{n}(c) \subset \bar{M}^{n+1}(c)$ given by (22). Then Σ is a DRMC-hypersurface or a HDRMC-hypersurface if and only if h is a solution of the equation given by

$$
\begin{gather*}
\frac{\Delta h}{J_{c}}+\frac{(n-2)}{2\left(J_{c}\right)^{2}}\left\langle\nabla J_{c}, \nabla h\right\rangle+a n h=0, \tag{31}\\
\Delta\left[\frac{\Delta h}{J_{c}}+\frac{(n-2)}{2\left(J_{c}\right)^{2}}\left\langle\nabla J_{c}, \nabla h\right\rangle+a n h\right]=0, \tag{32}
\end{gather*}
$$

respectively, where J_{c} is given by (23).
Proof. By Corollary 1, we must calculate $\Delta_{L} h$ (the Laplacian operator of the function h with respect to the metric L) in the parameterization Y given by (22). From Remark 1 we have that $L_{i j}=0$, if $1 \leq 1 \neq j \leq n$ and $L_{i i}=J_{c}, 1 \leq i \leq n$. Thus, from definition of Laplacian operator we obtain that

$$
\Delta_{L} h=\frac{\Delta h}{J_{c}}+\frac{(n-2)}{2\left(J_{c}\right)^{2}}\left\langle\nabla J_{c}, \nabla h\right\rangle .
$$

Hence, it follows (31) and (32).
Remark 2. For $n=2$, from Theorem 3 we obtain that the DRMC-surfaces and the HDRMC-surfaces satisfy

$$
\begin{gather*}
\frac{1}{J_{c}}\left(\Delta h+2 a J_{c} h\right)=0, \tag{33}\\
\Delta\left[\frac{1}{J_{c}}\left(\Delta h+2 a J_{c} h\right)\right]=0, \tag{34}
\end{gather*}
$$

respectively.

In the following result we present a way to obtain DRMC-surfaces and HDRMCsurfaces in $\bar{M}^{3}(c)$ using two holomorphic functions.

Corollary 2. On the conditions of the Theorem3.
i) For $n=2, a=1, c= \pm 1$,
(1) the solutions of (34) are given by $h=\frac{\langle 1, A\rangle+\langle u, B\rangle}{1+c|u|^{2}}$, where A, B are holomorphic functions,
(2) the solutions of (33) are given by $h=\frac{\langle 1, A\rangle+\langle u, B\rangle}{1+c|u|^{2}}$, where A is a holomorphic function and B is a holomorphic function such that $B=\int\left(c A^{\prime} u-c A+i c_{1}\right) d u$, c_{1} is a real constant.
ii) For $n=2, a \in \mathbb{R}, a \neq 0, c=0$,
(3) some solutions of (33) are given by

$$
\begin{equation*}
h(u)=\frac{\Omega C_{1} C_{2}}{a} e^{-\left(\frac{c_{1}-2 a c_{2}}{2\left|z_{1}\right|^{2}}\right)\left(b_{1} u_{1}+a_{1} u_{2}\right)} \sin \left(\frac{\Omega}{2\left|z_{1}\right|^{2}}\left(a_{1} u_{1}-b_{1} u_{2}\right)\right), \tag{35}
\end{equation*}
$$

(4) some solutions of (34) are given by

$$
\begin{align*}
h(u)= & -\frac{1}{2 a^{2}\left|z_{1}\right|^{2}} e^{-2 \alpha\left(b_{1} u_{1}+a_{1} u_{2}\right)}\left(C _ { 2 } C _ { 3 } K _ { 1 } e ^ { \alpha (b _ { 1 } u _ { 1 } + a _ { 1 } u _ { 2 }) } \left(a_{1} \cos \left(\alpha\left(a_{1} u_{1}-b_{1} u_{2}\right)\right)\right.\right. \\
& \left.+b_{1} \sin \left(\alpha\left(a_{1} u_{1}-b_{1} u_{2}\right)\right)\right)+C_{1} C_{3} K_{2} e^{\left(\alpha+\frac{\Omega}{2\left|z_{1}\right|^{2}}\right)}\left(a_{1} \cos \left(\beta\left(a_{1} u_{1}-b_{1} u_{2}\right)\right)\right. \\
& \left.+b_{1} \sin \left(\beta\left(a_{1} u_{1}-b_{1} u_{2}\right)\right)\right)+4\left|z_{1}\right|^{2} C_{1} C_{2} e^{\frac{\Omega}{2\left|z_{1}\right|^{2}}\left(b_{1} u_{1}+a_{1} u_{2}\right)} \times \tag{36}\\
& \left.\sin \left(\frac{\Omega}{2\left|z_{1}\right|^{2}}\left(a_{1} u_{1}-b_{1} u_{2}\right)\right)\right),
\end{align*}
$$

where

$$
\begin{aligned}
& c_{1}, c_{2}, C_{1}, C_{2}, C_{3} \in \mathbb{R}, z_{1}=a_{1}+i b_{1} \in \mathbb{C}, \Omega=\sqrt{c_{1}^{2}+4 a\left(2\left|z_{1}\right|^{2}-c_{1} c_{2}+a c_{2}^{2}\right)}, \\
& \alpha=\frac{c_{1}-2 a c_{2}+\Omega}{4\left|z_{1}\right|^{2}}, \beta=\frac{c_{1}-2 a c_{2}-\Omega}{4\left|z_{1}\right|^{2}}, K_{1}=a\left(4\left|z_{1}\right|^{2}-2 c_{1} c_{2}\right)+c_{1}\left(c_{1}-\Omega\right), \\
& K_{2}=a\left(4\left|z_{1}\right|^{2}-2 c_{1} c_{2}\right)+c_{1}\left(c_{1}+\Omega\right) .
\end{aligned}
$$

Proof. i) We will show that the given a holomorphic function g, non-zero real con-
stants r, s with $k=r s$ and $\Omega(u)=\frac{2 \sqrt{2}\left|g^{\prime}\right|}{r+s|g|^{2}}$, the functions

$$
\begin{equation*}
h(u)=\frac{\langle 1, A\rangle+\langle g, B\rangle}{r+s|g|^{2}}, \tag{37}
\end{equation*}
$$

are solutions of the two-dimensional generalized Helmholtz equation (26), where A and B are holomorphic functions.
Moreover, (37) are solutions of the two-dimensional Helmholtz equation (25) if the holomorphic functions A and B satisfy

$$
\begin{equation*}
B(u)=\frac{1}{r} \int\left(s g A^{\prime}-s g^{\prime} A+i c_{1} g^{\prime}\right) d u \tag{38}
\end{equation*}
$$

Consider

$$
\begin{equation*}
h=\frac{f}{T}, \text { where } T=r+s|g|^{2} . \tag{39}
\end{equation*}
$$

Calculating the Laplacian of h we have

$$
\Delta h=\frac{\Delta f}{T}+2\left\langle\nabla f, \nabla\left(\frac{1}{T}\right)\right\rangle+f \Delta\left(\frac{1}{T}\right) .
$$

Using the expression of T given in (39), we get

$$
\begin{aligned}
\Delta h & =\frac{\Delta f}{T}-4 s\left\langle\nabla f, \frac{g g^{\prime}}{T^{2}}\right\rangle+f\left(-\frac{4 s\left|g^{\prime}\right|^{2}}{T^{2}}+\frac{8 s^{2}\left|g g^{\prime}\right|^{2}}{T^{3}}\right) \\
& =\frac{\Delta f}{T}-4\left\langle\nabla f, \frac{g \overline{g^{\prime}}}{T^{2}}\right\rangle+4 f s\left|g^{\prime}\right|^{2}\left(\frac{1}{T^{2}}-\frac{2 r}{T^{3}}\right) .
\end{aligned}
$$

This equation can be written as

$$
\begin{equation*}
\frac{T^{2}}{\left|g^{\prime}\right|^{2}}\left(\Delta h+\frac{8 r s\left|g^{\prime}\right|^{2}}{T^{2}} h\right)=T \frac{\Delta f}{\left|g^{\prime}\right|^{2}}-4 s\left\langle\nabla f, \frac{g}{g^{\prime}}\right\rangle+4 s f . \tag{40}
\end{equation*}
$$

Thus, for $\Omega=\frac{2 \sqrt{2}\left|g^{\prime}\right|}{r+s|g|^{2}}$, the function $h=\frac{f}{T}$ is a solution of the generalized Helmholtz equation (26), if and only if

$$
\Delta\left\{T \frac{\Delta f}{\left|g^{\prime}\right|^{2}}-4 s\left\langle\nabla f, \frac{g}{g^{\prime}}\right\rangle+4 s f\right\}=T \Delta\left(\frac{\Delta f}{\left|g^{\prime}\right|^{2}}\right)=0
$$

On the other hand, the solutions of the equation $\Delta\left(\frac{\Delta f}{\left|g^{\prime}\right|^{2}}\right)=0$ are given by $f=$ $\langle 1, A\rangle+\langle g, B\rangle$, where A, B are holomorphic functions. Thus, we get (37).
Also, it is easy to show that (40) is equivalent to

$$
\left\langle 1, r \frac{B^{\prime}}{g^{\prime}}-s \frac{g A^{\prime}}{g^{\prime}}+s A\right\rangle=0 .
$$

From this expression we obtain

$$
r \frac{B^{\prime}}{g^{\prime}}-s \frac{g A^{\prime}}{g^{\prime}}+s A=i c_{1}
$$

Hence, we get (38). Therefore, (1) and (2) follows from (33)-(38), for $r=a=1$, $s=c= \pm 1, g(u)=u$ and $\Omega(u)=\frac{2 \sqrt{2}}{1+c|u|^{2}}$.
ii) We observe that for $a=0$, the harmonic and biharmonic functions are solutions of (33) and (34), respectively.
For $a \neq 0$, we will find solutions of (33) and (34) of the form

$$
\begin{equation*}
h=\langle A, B\rangle, \tag{41}
\end{equation*}
$$

where A, B are holomorphic functions.
Calculating the Laplacian of (41), we get $\Delta h=4\left\langle A^{\prime}, B^{\prime}\right\rangle$, using this expression in (33) it follows that

$$
\left\langle 1, \frac{a B}{A}\right\rangle+\left\langle\frac{2 A^{\prime}}{A}, \frac{B^{\prime}}{A}\right\rangle=0 .
$$

By Lemma 1 we obtain

$$
\begin{align*}
B & =-\frac{2 \bar{z}_{1}}{a} A^{\prime}+\frac{i c_{1}}{a} A \tag{42}\\
B^{\prime} & =2 i c_{2} A^{\prime}+z_{1} A \tag{43}
\end{align*}
$$

From (42)

$$
\begin{equation*}
B^{\prime}=-\frac{2 \bar{z}_{1}}{a} A^{\prime \prime}+\frac{i c_{1}}{a} A^{\prime} \tag{44}
\end{equation*}
$$

Thus, from (43) and (44) we obtain

$$
2 \overline{z_{1}} A^{\prime \prime}+i\left(2 a c_{2}-c_{1}\right) A^{\prime}+a z_{1} A=0,
$$

whose solution is given by

$$
\begin{equation*}
A(u)=C_{1} e^{i\left(\frac{c_{1}-2 a c_{2}-\Omega}{4 \bar{z}_{1}}\right) u}+C_{2} e^{i\left(\frac{c_{1}-2 a c_{2}+\Omega}{4 \bar{z}_{1}}\right) u} . \tag{45}
\end{equation*}
$$

Using (45) in (42) we obtain

$$
\begin{equation*}
B(u)=\frac{i}{2 a}\left(C_{1}\left(c_{1}+2 a c_{2}+\Omega\right) e^{i\left(\frac{c_{1}-2 a c_{2}-\Omega}{4 \bar{z}_{1}}\right) u}+C_{2}\left(c_{1}+2 a c_{2}-\Omega\right) e^{i\left(\frac{c_{1}-2 a c_{2}+\Omega}{4 \bar{z}_{1}}\right) u}\right) . \tag{46}
\end{equation*}
$$

Thus, (35) follows from (41), (45) and (46).
Similarly, calculating the Laplacian of (41) and using (34) we obtain

$$
\left\langle 1, \frac{a B^{\prime}}{A^{\prime}}\right\rangle+\left\langle\frac{2 A^{\prime \prime}}{A}, \frac{B^{\prime \prime}}{A^{\prime}}\right\rangle=0 .
$$

By Lemma 1 we obtain

$$
\begin{align*}
B^{\prime} & =-\frac{2 \bar{z}_{1}}{a} A^{\prime \prime}+\frac{i c_{1}}{a} A^{\prime}, \tag{47}\\
B^{\prime \prime} & =2 i c_{2} A^{\prime \prime}+z_{1} A^{\prime} . \tag{48}
\end{align*}
$$

From (47)

$$
\begin{equation*}
B^{\prime \prime}=-\frac{2 \bar{z}_{1}}{a} A^{\prime \prime \prime}+\frac{i c_{1}}{a} A^{\prime \prime} . \tag{49}
\end{equation*}
$$

Thus, from (48) and (49) we obtain

$$
2 \overline{z_{1}} A^{\prime \prime \prime}+i\left(2 a c_{2}-c_{1}\right) A^{\prime \prime}+a z_{1} A^{\prime}=0,
$$

whose solution is given by

$$
\begin{equation*}
A(u)=-4 i \overline{z_{1}}\left(\frac{C_{1}}{c_{1}-2 a c_{2}-\Omega} e^{i\left(\frac{c_{1}-2 a c_{2}-\Omega}{4 \bar{z}_{2}}\right) u}+\frac{C_{2}}{c_{1}-2 a c_{2}+\Omega} e^{i\left(\frac{c_{1}-2 a c_{2}+\Omega}{4 \overline{z_{1}}}\right) u}\right)+C_{3} . \tag{50}
\end{equation*}
$$

Using (50) in (47) and integrating, we obtain

$$
\begin{align*}
B(u)= & -\frac{i}{2 a^{2} z_{1}}\left(C_{1}\left(4 a\left|z_{1}\right|^{2}-2 a c_{1} c_{2}+c_{1}\left(c_{1}+\Omega\right)\right) e^{i\left(\frac{c_{1}-2 a c_{2}-\Omega}{4 \bar{z}_{1}}\right) u}\right. \tag{51}\\
& \left.+C_{2}\left(4 a\left|z_{1}\right|^{2}-2 a c_{1} c_{2}+c_{1}\left(c_{1}-\Omega\right)\right) e^{i\left(\frac{c_{1}-2 a c_{2}+\Omega}{4 \bar{z}_{1}}\right) u}\right) .
\end{align*}
$$

Thus, (36) follows from (41), (50) and (51). Therefore, (3) and (4) are proven. The proof is complete.

The following result classifies the DRMC-hypersurfaces of rotation.

Corollary 3. Let Σ be a rotation spherical hypersurface of $\bar{M}^{n+1}(c)$ given by Theorem 3. Σ is a DRMC-hypersurface if and only if h is given by
(1) for $a=0, c=0$,

$$
h(u)= \begin{cases}C_{1}+2 C_{2} \ln |u|, & \text { if } n=2, \\ \frac{2 C_{1}|u|^{2-n}}{2-n}+c_{2}, & \text { if } n \neq 2,\end{cases}
$$

(2) for $a=0, c= \pm 1$,

$$
h(u)=\left\{\begin{array}{l}
C_{1}+2 C_{2} \ln |u|, \text { if } n=2, \\
C_{1}\left(|u|^{2}-\frac{1}{|u|^{2}}\right)+4 c C_{1} \ln |u|+C_{2}, \text { if } n=4, \\
C_{1}(-c)^{\frac{n-2}{2}} \operatorname{Beta}\left(-c|u|^{2}, \frac{2-n}{2}, n-1\right)+C_{2}, \text { if } n \neq 2, n \neq 4
\end{array}\right.
$$

(3) for $a \neq 0, c=0$,

$$
h(u)=|u|^{1-\frac{n}{2}}\left(C_{1} \operatorname{Bessel} J\left(\frac{n}{2}-1, \sqrt{a n}|u|\right)+C_{2} \operatorname{Bessel} Y\left(\frac{n}{2}-1, \sqrt{a n}|u|\right)\right),
$$

(4) for $a \neq 0, c= \pm 1, n=2$,

$$
\begin{aligned}
h(u)= & C_{1}\left(1+c|u|^{2}\right)^{\frac{1-\sqrt{8 a c+1}}{2}} H g F_{1}\left(\frac{1-\sqrt{8 a c+1)}}{2}, \frac{1-\sqrt{8 a c+1)}}{2}\right. \\
& \left.1-\sqrt{8 a c+1}, 1+c|u|^{2}\right)+C_{2}\left(1+c|u|^{2}\right)^{\frac{1+\sqrt{8 a c+1}}{2}} H g F_{1}\left(\frac{1+\sqrt{8 a c+1}}{2},\right. \\
& \left.\frac{1+\sqrt{8 a c+1}}{2}, 1+\sqrt{8 a c+1}, 1+c|u|^{2}\right)
\end{aligned}
$$

(5) for $a \neq 0, c=1, n=4$,

$$
\begin{aligned}
h(u)= & C_{1}\left(1+|u|^{2}\right)^{\frac{3-\sqrt{9+16 a}}{2}} H g F_{1}\left(\frac{3-\sqrt{9+16 a}}{2}, \frac{1-\sqrt{9+16 a}}{2},\right. \\
& \left.1-\sqrt{9+16 a}, 1+|u|^{2}\right)+C_{2}\left(1+|u|^{2}\right)^{\frac{3+\sqrt{9+16 a}}{2}} H g F_{1}\left(\frac{1+\sqrt{9+16 a}}{2},\right. \\
& \left.\frac{3+\sqrt{9+16 a}}{2}, 1+\sqrt{9+16 a}, 1+|u|^{2}\right)
\end{aligned}
$$

(6) for $a \neq 0, c=-1, n=4$,

$$
\begin{aligned}
h(u)= & C_{1}\left(1-|u|^{2}\right)^{\frac{3-\sqrt{9-16 a}}{2}} H g F_{1}\left(\frac{3-\sqrt{9-16 a}}{2}, \frac{1-\sqrt{9-16 a}}{2},\right. \\
& \left.1-\sqrt{9-16 a}, 1-|u|^{2}\right)+C_{2}\left(1-|u|^{2}\right)^{\frac{3+\sqrt{9-16 a}}{2}} \operatorname{HgF}_{1}\left(\frac{3+\sqrt{9-16 a}}{2},\right. \\
& \left.\frac{1+\sqrt{9-16 a}}{2}, 1+\sqrt{9-16 a}, 1-|u|^{2}\right),
\end{aligned}
$$

(7) for $a \neq 0, c= \pm 1, n \neq 2, n \neq 4$,

$$
\begin{aligned}
h(u)= & \left(1+c|u|^{2}\right)^{\frac{n-1-\sqrt{(n-1)^{2}+4 a c n}}{2}}\left(C _ { 1 } H g F _ { 1 } \left(\frac{1-\sqrt{(n-1)^{2}+4 a c n}}{2},\right.\right. \\
& \left.\frac{n-1-\sqrt{(n-1)^{2}+4 a c n}}{2}, \frac{n}{2},-c|u|^{2}\right)+C_{2}|u|^{2-n} \times \\
& H g F_{1}\left(\frac{1-\sqrt{(n-1)^{2}+4 a c n}}{2}, \frac{3-n-\sqrt{(n-1)^{2}+4 a c n}}{2}\right. \\
& \left.\left.\frac{4-n}{2},-c|u|^{2}\right)\right)
\end{aligned}
$$

where $H g F_{1}=$ Hypergeometric $2 F_{1}$.

Proof. From Theorem 4.17 in [10], we get that for $n \geq 2, h$ is a radial function i.e. $h(u)=f(t), t=|u|^{2}$.

Differentiating the functions h and J_{c}, we obtain

$$
\Delta h=4 t f^{\prime \prime}(t)+2 n f^{\prime}(t), \nabla h=2 u f^{\prime}(t), \nabla J_{c}=\left\{\begin{array}{l}
0, \text { if } c=0, \\
-\frac{16 c u}{(1+c t)^{3}}, \text { if } c= \pm 1
\end{array}\right.
$$

Using these expressions in (31) we obtain

$$
\begin{align*}
& 4 t f^{\prime \prime}(t)+2 n f^{\prime}(t)+\operatorname{anf}(t)=0, \quad \text { for } c=0, \tag{52}\\
& 2 t f^{\prime \prime}(t)+\frac{(n+c t(4-n)) f^{\prime}(t)}{1+c t}+\frac{2 a n f(t)}{(1+c t)^{2}}=0, \quad \text { for } c= \pm 1 . \tag{53}
\end{align*}
$$

Now we will find the solutions of equations (52) and (53).
Case: $a=0$.
The solutions of (52) are given by
for $n=2$

$$
f(t)=C_{1}+C_{2} \ln t
$$

for $n \neq 2$

$$
f(t)=\frac{2 C_{1} t^{\frac{2-n}{2}}}{2-n}+C_{2} .
$$

The solutions of (53) are given by
for $n=2$

$$
f(t)=C_{1}+C_{2} \ln t
$$

for $n=4$

$$
f(t)=C_{1}\left(t-\frac{1}{t}\right)+2 c C_{1} \ln t+C_{2}
$$

for $n \neq 2, n \neq 4$

$$
f(t)=C_{1}(-c)^{\frac{n-2}{2}} \operatorname{Beta}\left(-c t, \frac{2-n}{2}, n-1\right)+C_{2} .
$$

Case: $a \neq 0$.
The solutions of (52) are given by

$$
f(t)=t^{\frac{1}{2}-\frac{n}{4}}\left(C_{1} \operatorname{Bessel} J\left(\frac{n}{2}-1, \sqrt{a n t}\right)+C_{2} \operatorname{BesselY}\left(\frac{n}{2}-1, \sqrt{a n t}\right)\right) .
$$

The solutions of (53) are given by
for $n=2$

$$
\begin{aligned}
f(t)= & C_{1}(1+c t)^{\frac{1-\sqrt{8 a c+1}}{2}} H g F_{1}\left(\frac{1-\sqrt{8 a c+1)}}{2}, \frac{1-\sqrt{8 a c+1)}}{2}\right. \\
& 1-\sqrt{8 a c+1}, 1+c t)+C_{2}(1+c t)^{\frac{1+\sqrt{8 a c+1}}{2}} \times \\
& H g F_{1}\left(\frac{1+\sqrt{8 a c+1}}{2}, \frac{1+\sqrt{8 a c+1}}{2}, 1+\sqrt{8 a c+1}, 1+c t\right)
\end{aligned}
$$

for $n=4, c=1$

$$
\begin{aligned}
f(t)= & C_{1}(1+t)^{\frac{3-\sqrt{9+16 a}}{2}} H g F_{1}\left(\frac{3-\sqrt{9+16 a}}{2}, \frac{1-\sqrt{9+16 a}}{2},\right. \\
& 1-\sqrt{9+16 a}, 1+t)+C_{2}(1+t)^{\frac{3+\sqrt{9+16 a}}{2}} \times \\
& H g F_{1}\left(\frac{1+\sqrt{9+16 a}}{2}, \frac{3+\sqrt{9+16 a}}{2}, 1+\sqrt{9+16 a}, 1+t\right),
\end{aligned}
$$

for $n=4, c=-1$

$$
\begin{aligned}
f(t)= & C_{1}(1-t)^{\frac{3-\sqrt{9-16 a}}{2}} H g F_{1}\left(\frac{3-\sqrt{9-16 a}}{2}, \frac{1-\sqrt{9-16 a}}{2},\right. \\
& 1-\sqrt{9-16 a}, 1-t)+C_{2}(1-t)^{\frac{3+\sqrt{9-16 a}}{2}} \times \\
& H g F_{1}\left(\frac{3+\sqrt{9-16 a}}{2}, \frac{1+\sqrt{9-16 a}}{2}, 1+\sqrt{9-16 a}, 1-t\right),
\end{aligned}
$$

for $n \neq 2, n \neq 4$

$$
\begin{aligned}
f(t)= & (1+c t)^{\frac{n-1-\sqrt{(n-1)^{2}+4 a c n}}{2}}\left(C _ { 1 } H g F _ { 1 } \left(\frac{1-\sqrt{(n-1)^{2}+4 a c n}}{2},\right.\right. \\
& \left.\frac{n-1-\sqrt{(n-1)^{2}+4 a c n}}{2}, \frac{n}{2},-c t\right)+C_{2} t^{\frac{2-n}{2} \times} \\
& H g F_{1}\left(\frac{1-\sqrt{(n-1)^{2}+4 a c n}}{2}, \frac{3-n-\sqrt{(n-1)^{2}+4 a c n}}{2},\right. \\
& \left.\left.\frac{4-n}{2},-c t\right)\right)
\end{aligned}
$$

The proof is complete.

Remark 3. From Theorem 3, in the case of HDRMC-hypersurfaces of rotation, the equation (32) is equivalent to

$$
\begin{align*}
& 8 t^{2} f^{(4)}(t)+8(n+2) t f^{\prime \prime \prime \prime}(t)+2 n(n+2+a t) f^{\prime \prime}(t)+a n^{2} f(t)=0, \text { if } c=0, \tag{54}\\
& 4 t^{2}(1+c t)^{2} f^{(4)}(t)+\left(32 t^{3}+4 c t^{2}(n+10)+4 t(n+2)\right) f^{\prime \prime \prime}(t) \tag{55}\\
& +\left(\left(56+2 n-n^{2}\right) t^{2}+4(8 c+a n+3 c n) t+n^{2}+2 n\right) f^{\prime \prime}(t) \\
& +\left(2(4-n)(n+2) t+2 a n^{2}+4 c n\right) f^{\prime}(t)+\frac{8 a(1-n) t f(t)}{(1+c t)^{2}}=0, \text { if } c= \pm 1
\end{align*}
$$

The following result classifies the HDRMC-hypersurfaces of rotation for $c=0$ i.e. when $\bar{M}^{n+1}(0)=\mathbb{R}^{n+1}$.

Corollary 4. Let Σ be a rotation spherical hypersurface of $\bar{M}^{n+1}(0)$ given by Theorem 3. Σ is a HDRMC-hypersurface if and only if h is given by
(1) for $a=0$,

$$
h(u)=\left\{\begin{array}{l}
\left(C_{4}-C_{2}\right)|u|^{2}+2\left(|u|^{2} C_{2}-C_{1}\right) \ln |u|+C_{3}, \text { if } n=2, \\
C_{4}|u|^{2}-\frac{\left(3 C_{2}-\sqrt{15} C_{1}\right) \cos (\sqrt{15} \ln |u|)+\left(\sqrt{15} C_{2}+3 C_{1}\right) \sin (\sqrt{15} \ln |u|)}{24|u|} \\
+C_{3}, \text { if } n=4, \\
\frac{4|u|^{2-n}\left((n-4) C_{1}+n C_{2}|u|^{2}\right)}{n(n-2)(n-4)}+C_{4}|u|^{2}+C_{3}, \text { if } n \neq 2, n \neq 4,
\end{array}\right.
$$

(2) for $a \neq 0$,

$$
h(u)=\left\{\begin{array}{l}
\frac{2 a C_{1} \ln |u|-2 C_{2} \operatorname{Bessel} J(0, \sqrt{2 a}|u|)-4 C_{3} \operatorname{Bessel} Y(0, \sqrt{2 a}|u|)+2 C_{2}}{a} \\
+C_{4}, \text { if } n=2, \\
-2 C_{3} \text { Meijer }\left(\left\{\{0\},\left\{-\frac{1}{2}\right\}\right\},\left\{\{0,0\},\left\{-1,-\frac{1}{2}\right\}\right\}, \sqrt{a}|u|, \frac{1}{2}\right) \\
-\frac{C_{2} \operatorname{BesselI}(1,2 \sqrt{-a}|u|)}{\sqrt{-a}|u|}-\frac{C_{1}}{|u|^{2}}+C_{2}, \text { if } n=4, \\
\frac{|u|^{-n}}{a^{2} n}\left(\frac { 2 ^ { 2 - n } (a n | u | ^ { 2 }) ^ { \frac { n } { 4 } } C _ { 3 } \operatorname { G a m m a } (\frac { n } { 2 }) } { \operatorname { G a m m a } (\frac { n + 2 } { 2 }) } \left(2\left(a n|u|^{2}\right)^{\frac{n}{4}}-2^{\frac{n}{2}} \sqrt{a n}|u| \times\right.\right. \\
\left.\operatorname{BesselJ}\left(\frac{n-2}{2}, \sqrt{a n}|u|\right) \operatorname{Gamma}\left(\frac{n}{2}\right)\right)-\frac{a|u|^{2}}{n-2}\left(2 a n C_{1}-4 C_{2}(n-2)\right. \\
\left.\left.+C_{2} n(n-2)^{2} G a m m a\left(-\frac{n}{2}\right) H g F_{1} R\left(\frac{4-n}{2},-\frac{a n|u|^{2}}{4}\right)\right)\right)+C_{4}, \\
\text { if } n \neq 2, n \neq 4,
\end{array}\right.
$$

where $H g F_{1} R=$ Hypergeometric $0 F 1$ Regularized.
Proof. Similarly to the proof of Corollary 3, from Theorem 4.17 in [10], we get that for $n \geq 2, h$ is a radial function i.e. $h(u)=f(t), t=|u|^{2}$.
On the other hand, from Remark 3 the expression (32) is equivalent to (54), thus, we will find the solutions of this equation.
The solutions of equation (54) are given by for $a=0$

$$
f(t)=\left\{\begin{array}{l}
\left(C_{4}-C_{2}\right) t+\left(t C_{2}-C_{1}\right) \ln t+C_{3}, \text { if } n=2, \\
C_{4} t-\frac{\left(3 C_{2}-\sqrt{15} C_{1}\right) \cos \left(\frac{\sqrt{15} \ln t}{2}\right)+\left(\sqrt{15} C_{2}+3 C_{1}\right) \sin \left(\frac{\sqrt{15} \ln t}{2}\right)}{24 \sqrt{t}} \\
+C_{3}, \text { if } n=4, \\
\frac{4 t^{\frac{2-n}{2}}\left((n-4) C_{1}+n C_{2} t\right)}{n(n-2)(n-4)}+C_{4} t+C_{3}, \text { if } n \neq 2, n \neq 4,
\end{array}\right.
$$

for $a \neq 0$

$$
f(t)=\left\{\begin{array}{l}
\frac{a C_{1} \ln t-2 C_{2} \operatorname{Bessel} J(0, \sqrt{2 a t})-4 C_{3} \operatorname{BesselY}(0, \sqrt{2 a t})+2 C_{2}}{a} \\
+C_{4}, \text { if } n=2, \\
-2 C_{3} M e i j e r G\left(\left\{\{0\},\left\{-\frac{1}{2}\right\}\right\},\left\{\{0,0\},\left\{-1,-\frac{1}{2}\right\}\right\}, \sqrt{a t}, \frac{1}{2}\right) \\
-\frac{C_{2} \operatorname{BesselI}(1,2 \sqrt{-a t})}{\sqrt{-a t}}-\frac{C_{1}}{t}+C_{2}, \text { if } n=4, \\
\frac{t^{-\frac{n}{2}}\left(\frac { 2 ^ { 2 - n } (a n t) ^ { \frac { n } { 4 } } C _ { 3 } \operatorname { G a m m a } (\frac { n } { 2 }) } { a ^ { 2 } n } \left(2(a n t)^{\frac{n}{4}}-2^{\frac{n}{2}} \sqrt{a n t} \times\right.\right.}{\text { Gamma }\left(\frac{n+2}{2}\right)} \\
\text { BesselJ } \left.\left(\frac{n-2}{2}, \sqrt{a n t}\right) \operatorname{Gamma}\left(\frac{n}{2}\right)\right)-\frac{a t}{n-2}\left(2 a n C_{1}-4 C_{2}(n-2)\right. \\
\left.\left.+C_{2} n(n-2)^{2} \operatorname{Gamma}\left(-\frac{n}{2}\right) H g F_{1} R\left(\frac{4-n}{2},-\frac{a n t}{4}\right)\right)\right)+C_{4}, \\
\text { if } n \neq 2, n \neq 4 .
\end{array}\right.
$$

The proof is complete.

4 Conclusions

The DRMC-hypersurfaces and the HDRMC-hypersurfaces in space forms $\bar{M}^{n+1}(c)$, $c=-1,0,1$ generalize the Weingarten hypersurfaces of the spherical type studied by [10]. In the case $n=2$, using two holomorphic functions a way to construct DRMCsurfaces and HDRMC-surfaces in $\bar{M}^{3}(c)$ is obtained. Finally, as a first step, we classify the DRMC-hypersurfaces of rotation in $\bar{M}^{n+1}(c)$ and the HDRMC-hypersurfaces of rotation in \mathbb{R}^{n+1}. It would be interesting to study DRMC-hypersurfaces and HDRMC-hypersurfaces with some geometric properties such as embeddededness, completeness. In this sense, future research is being carried out.

References

[1] BARBOSA, A. L. Possibilidade de confinamento no modelo $\mathrm{SU}(2)$-Cor, Dissertation, Universidade Estadual Paulista, UNESP, 1994.
[2] CORRO, A. V. Generalized Weingarten surfaces of bryant type in hyperbolic 3-space, Matemática Contemporânea., 30, p. 71-89, 2006.
[3] CORRO, A. V.; FERNANDES, K. V.; RIVEROS, C. M. C. Generalized Weingarten surfaces of harmonic type in hyperbolic 3-space, Dif. Geom. and its Appl., 58, p. 202-226, 2018.
[4] CORRO, A. V.; RIVEROS, C. M. C. Generalized Helmholtz equation, Selecciones Matemáticas., 6(1), p. 18-24, 2019.
[5] FERREIRA, W.; ROITMAN, P. Hypersurfaces in hyperbolic space associated with the conformal scalar curvature equation $\delta u+k u^{\frac{n+2}{n-2}}=0$, Dif. Geom. and its Appl., 27, p. 279-295, 2009.
[6] FOKAS, A. S.; GELFAND, I. M. Surfaces on Lie Groups, on Lie Algebras, and Their Integrability, Commun. Math. Phys., 177, p. 203-220, 1996.
[7] GÁLVEZ, J. A.; MARTÍNEZ, A.; MILÁN, F. Complete linear Weingarten surfaces of bryant type. a plateau problem at infinity, Trans. Amer. Math. Soc., 356, p. 3405-3428, 2004.
[8] GROHS, P.; MITRA, N. J.; POTTMANN, H. Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math., 31(4), p. 391419, 2009.
[9] MACHADO, C. D. F. Hipersuperfícies Weingarten de tipo esférico, thesis, Universidade de Brasíla, Brasília-DF, 2018.
[10] REYES, E. O. S.; RIVEROS, C. M. C. Weingarten hypersurfaces of the spherical type in space forms, Serdica Mathematical journal., 45(3), p. 259-288, 2019.
[11] RIVEROS, C. M. C. ; CORRO, A. M. V. Surfaces with constant Chebyshev angle, Tokyo J. Math., 35(2), p. 359-366, 2012.

[^1]
[^0]: *Departamento de Matemática, Universidade de Brasília, carlos@mat.unb.br
 ${ }^{\dagger}$ Instituto de Matemática e Estatística, Universidade Federal de Goiás, avcorro@gamil.com
 ${ }^{\ddagger}$ Centro das Ciências Exatas e das Tecnologias, Universidade Federal do Oeste da Bahia, edwin.reyes@ufob.edu.br

[^1]: Submetido em 14 set. 2021.
 Aceito em 23 nov. 2021.

