NEXUS

Mathematicee ISSN: 2595-9824

v. 4, 2021, e20009

Hypersurfaces with radial mean curvature in space
forms

Hipersuperficies com curvatura média radial em formas espaciais

Carlos M. C. Riveros*
Armando M. V. Corrof
Edwin O. S. Reyes?

Abstract: In this paper, we study two classes of hypersurfaces, namely, the DRMC-
hypersurfaces and the HDRMC-hypersurfaces in space forms Mn+1(c), c=-1,0,1,
these classes include the Weingarten hypersurfaces of the spherical type obtained in
[10]. For n = 2, we present a way to obtain DRMC-surfaces and HDRMC-surfaces in
M (¢) using two holomorphic functions. Also, we classify the DRMC-hypersurfaces
of rotation in Mnﬂ(c) and the HDRMC-hypersurfaces of rotation in R**1,
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1 Introduction

The surfaces M C R? satisfying a functional relation of the form W (H, K) = 0,
where H and K are the mean and Gaussian curvatures of the surface M, respectively,
are called Weingarten surfaces. Examples of Weingarten surfaces are the surfaces
of revolution and the surfaces of constant mean or Gaussian curvature. In [7], the
authors study an important class of surfaces satisfying a linear relation of the form

aH +bK + ¢ =0,

where a,b,c € R and a? + > # 0. These surfaces are called linear Weingarten
surfaces. The paper [6], is devoted to the integrability of linear Weingarten surfaces.

Corro, in [2] presented a way of parameterizing surfaces as envelopes of a congru-
ence of spheres in which an envelope is contained in a plane and with radius function
h associated with a hydrodynamic type system. As an application, it studies the
surfaces in hyperbolic space H? satisfying the relation

2(c—1) 2(c—1)

2ach™< (H—=1)+(a+b—ach™ < )K =0,

where a,b,c € R, a+b# 0, ¢ # 0, H is the mean curvature and K is the Gaussian
curvature. This class of surfaces includes the Bryant surfaces and the flat surfaces of
the hyperbolic space and are called generalized Weingarten surfaces of Bryant type.
In [3] the authors study the surfaces M in the hyperbolic space H? satisfying the
relation
2(H —1)e* + K(1 —e*) =0,

where (1 is a harmonic function with respect to the quadratic form o = —K1+2(H —
1)I1, I and I1 are the first and the second quadratic form of M. These surfaces are
called Generalized Weingarten surfaces of harmonic type.

In [5], the authors study a class of oriented hypersurfaces M in hyperbolic space

(n + 1)-dimensional that satisfy a Weingarten relation in the form

n

S (e—n+2r) (:)H —0,

r=0

where c is a real constant and H, is the rth mean curvature of the hypersurface M.
They show that this class of hypersurfaces is characterized by a harmonic application
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derived from the two hyperbolic Gauss map. Looking these hypersurfaces as orthog-
onal to a congruence of geodesics, they also show the relation of such hypersurfaces
with solutions of the equation Au + kuns = 0, where k € {—1,0,1}.

In [9], the author present a way to parameterize hypersurfaces as congruence of
spheres in which an envelope is contained in a hyperplane. Using this parametriza-
tion is presented a generalization of the surfaces of the spherical type (Laguerre
minimal surfaces) studied in [8], namely the Weingarten hypersurfaces of the spheri-
cal type, i.e. the oriented hypersurfaces of the Euclidean space M C R""! satisfying

a Weingarten relation of the form

> =y (”) H, =0,
r=1 "
where f € C*(M;R) and H, is the rth mean curvature of M. Later, Reyes and

Riveros [10], generalize the results obtained by [9] in space forms.

In this paper, we study two classes of hypersurfaces, namely, the DRMC-hypersurfaces
and the HDRMC-hypersurfaces in space forms M”H(c), c=—1,0,1, defined as:
An orientable hypersurface M C R"™' n > 2, is called a hypersurface with ra-
dial mean curvature which depends on the distance and radius functions (in short,
DRMC-hypersurface) if satisfy

Hp
1—d

+(a—c)h=0,a€R.

An orientable hypersurface M C R™™ n > 2, is called a hypersurface with radial
mean curvature of harmonic type (in short HDRMC-hypersurface) if satisfy

A(iRdJr(a—c)h) =0,

where Hp is the radial mean curvature.

We observe that when a = ¢ = 0 and Hiy = 0 we obtain the Weingarten hyper-
surfaces of the spherical type estudied by Machado in [9], also, when a = ¢ and
Hpi = 0 we obtain the Weingarten hypersurfaces of the spherical type estudied by
Reyes and Riveros in [10]. For n = 2 we present a way to obtain DRMC-surfaces
and HDRMC-surfaces in M?)(c) using two holomorphic functions. Also, we classify
the DRMC-hypersurfaces of rotation in Mnﬂ(c) and the HDRMC-hypersurfaces of
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rotation in R™* 1.

2 Preliminaries

Let Mn+1(c) be, the simply connected space form of sectional curvature ¢ = —1, 1, 0.
M”“(c) will denote the (n-+1)-dimensional hyperbolic space H"*!, if ¢ = —1, the
Euclidean space R"*! when ¢ = 0 or the sphere S"*!, if ¢ = 1.

Let U C R™ be an open set of R™ such that u = (uy,us,...,u,) € U. The partial
derivatives of f : U C R™ — R™, with respect to u;, 1 < i < n, will be denoted by
[

We denote by L"*2 the space of (n+2)-tuples u = (u1,us, ..., Upy2) € R*™2 with
n+1

the Lorentzian metric (u,v) = g U;V; — UpsoUnt2, Where v = (v1, Vg, ..., Upyo) and
i=1
we consider the hyperbolic space H"*! as a hypersurface of L"*2, namely,

H" ! = {u € L™ (u,u) = —1, Uppo > 0} .

Also, we consider the sphere S"*! as a hypersurface of R"*? with the Euclidean

metric, namely,

S* = {u e R™? (u,u) =1} .

Definition 1. Let M be a hypersurface of Mnﬂ(c). We say that M is orientable,
if there exist a unit vector field N normal to T,M, for all p € M. N is known as
Gauss map of M. In local coordinates,

n
N; = ZVVz‘jX,j, 1 <i<mn,
=1

where X is a parametrization of M. The matrix W = (W;;) is known as Weingarten

matriz of M.

Definition 2. The mean curvature and the Gauss-Kronecker curvature of M are

given by
1 n n
H=— k'z K = 79
g2t K=k
i=1 i=1
where ki, ..., k, are the principal curvatures of M.

NEXUS Mathematicae, Goiania, v. 4, 2021, €20009. 4



M Hypersurfaces with radial mean curvature in space forms

Definition 3. The rth-mean curvature H, of M is defined by
S (W)

where, for intergers 0 < r <n, S,.(W), is defined by

H, =

So(W) = 1,
1<ir<...<ir<n

Definition 4. Let M be a hypersurface of M +1(c), n > 2. M is a Weingarten
hypersurface of the spherical type in Mnﬂ(c), if the rth mean curvatures of M in
7+l . .

M (c) satisfy the equation

n

Z (_1)r—1rfr—1Hr =0,

r=1

for some function f € C>*°(M,R).
From now on, we will consider e. given by

(0,0,...,0,1,0) € L"2, if ¢ = —1,
ec=1{ (0,0,...,0,1) € R™! ifc =0,
(0,0,...,0,0,1) € R"™2, if ¢ = 1.

Definition 5. Let M be an orientable hypersurface in WH(C) and N the unit

normal vector field of M in Mnﬂ(c)7 such that N(p) # e., ¥V p € M. We define the
distance and radius functions d,h : M — R given by

dp) = (N).e), hip) = P peu 0

and the radial curvature k; of M as

_ ks
i = , 1 <9< n, 2
k o 1 <n (2)

with hk; —1# 0,V 1 <i <n and k; are the principal curvatures of M C Mnﬂ(c).
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Definition 6. We define the radial mean curvature Hg of the hypersurface M in
——n+1

M (c) as :
Hp = %ZE (3)

We consider M"(c) a hypersurface of Mnﬂ(c), such that M"(c) = H", if ¢ = —1,
M"(c) = R if ¢ = 0 or M"(¢) = S", if ¢ = 1, with unit normal vector field
N(p) =e., Vpe M"(c).

Let Y : U — M"(c) be a local orthogonal parametrization of M"(c). If L;; =
(Y;,Y;),1<i,j<n,then L; # 0 and L;; = 0 for i # j. The Christoffel symbols
of L;; are given by

' Ljji R L ; S
I =0, for distinct 4, j,m, T}, = 25;]-’ for all i, 7, T}, = _QLZ" fori # . (4)

We consider the sphere "™ ¢ R"*2 ¢; = (0,0,...,0,1) and —e; = (0,0,...,0,—1)
the north pole and south pole of S**1, respectively. The stereographic projection
P_:S" —{—¢;} - R and P, : S"™! — {e;} — R"™! are diffeomorphism given
by
q—({g,e1)ex q—(g.e1) e ;
P (¢ =——F+—" P = qeS". 5
& 1+ (g, e1) +(a) T (gen ! ®)

Therefore, the inverse mapping P~! and P;l are given by

We consider H"t! ¢ L"*2? and we define

P : H'! o R (7)

u— P(u),
where P(u) is the intersection of the hyperplane
R = {(ul, U, ..o Ung1 Unga) C R, 0 = O}

with the line that passes through the points u and (0,0,...,0,—1) € R"™. P is

known as the hyperbolic stereographic projection.
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The following result was obtained in [1].

Proposition 1. Let P : H"" — R™™ be given by (7). Then P is a diffeomorphism

of "™ on B"™1(1) = {u € R""; |u] < 1}.
Therefore, P~1 . B"1(1) — H"™! given by

S e )

is a parametrization of H'H C Ln+2,

The following results were obtained in [10].

(2u, 1+ (u,u)), u € B"(1),

Theorem 1. Consider ¥ an orientable hypersurface of Mn+l(c), N the unit normal
vector field of ¥ in WH(C) such that N(p) # e., Y p € X, h: ¥ — R given by
(1) and X : U — ¥ a local parametrization of p € X. Then, there exist a local

parametrization Y : U — M™(c), such that
X(u) =Y (u) + h(u) [ec = N(u)], u e U.

If Yis a local orthogonal parametrization of M™(c), then

2h [~ h;
XZY_?(;L_MY:Z_GC_}_C}L}/)’

2 [~ hy
Nz—(Z—’Ki—ec+chY> + e,

S\~ Ly
=1
where .
I L (12)
o L '
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The first, second and third fundamental forms of % in Mnﬂ(c), are given by

I=(X;X;) = Lij— %(VﬂLu +Vi;iLi;) + 45—6 Zn: Vit Vi Lk, (13)
k=1

II=—(N;,X,) = é—}; z": Vit Vit Lk — %V}iLm (14)

=1
HI= (N Ny) = 3 ViVl (15)

k=1

respectively, where

Vij = Li” (hj — lir@m) +chéij, 1<i,j<n, (16)

and Féj are the Christoffel symbols of the metric L;; = (Y;,Y;), 1 <i,j <n.
The Weingarten matric W = (W;;) is given by

W =2(SI, —2nV)" 'V, (17)

where 1,, is the identity matriz and V = (Vj;).
The condition of reqularity of X is given by

det(SI, — 2hV) # 0. (18)
Conversely, given a local orthogonal parametrization Y : U — M"(¢c) C Mnﬂ(c),
where U is a simply connected domain of R™ and a differentiable function h : U — R.
Then (10) is a hypersurface oanH(c) with Gauss map given by (11) and (12)-(18)
are satisfied.

Proposition 2. Let X : U Cc R* — X C WH(C) be a parametrization of a
hypersurface 3 given by (10). The following statements are equivalent

(1) X is parametrized by lines of curvature.
(2) Vi; =0, for1 <i#j<n.

(8) N;=—k;X,, for all 1 <i <mn, where
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2Vii

are the principal curvatures of X.

1<i<n, (19)

Remark 1. From (19), the eigenvalues o; of the matrix V' are given by

Sk; |
=M << 2
2(hk, —1)” == (20)

0;

where k; are the eigenvalues of the Weingarten matrix W.

From (20) we have that o; = gE’ Therefore,
& S
SN Vi = 2 Hp (21)

Let Y be a local orthogonal parametrization of M™(c) C M”H(C) given by

PL P IR = ST ife =1,
Y=< I:R*"—=R" ifc=0, (22)
P~1:B"(1) - H", ifc=—1,

where P!, P;l are given by (6), I is the identity function of R™ and P~! is given
by (8). The metric L in the parametrization Y is given by L;; = (Y,;,Y;) = 0, if
1<i#j<nand L; =(Y;Y,;) = J., where

Ty WERMife=1,
Jo(u) =< 1, u e R"if ¢ = 0, (23)
m,u < Bn(l)’ ifc=—1.
From (4), the Christoffel symbols associated to L;; are given by

. Jei , g ,
e =28 1= 2% — 1Y
wRg Y 2, w

1<i#j<n. (24)

The following result can be found in [10].

Theorem 2. Let 3 be an orientable hypersurface of WH(C) given by Theorem 1
where Y is the local orthogonal parametrization of M™(c) C Mnﬂ(c) given by (22).

33 1s a rotation spherical hypersurface ofﬁnﬂ(c) if and only if h is a radial function.
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In [4], is introduced the generalized Helmholtz equation and present explicit
solutions to this generalized Helmholtz equation, these solutions depend on three
holomorphic functions.

The two-dimensional Helmholtz equation for h : U C R? — R defined by

Ah(u) + kO (w)h(u) = 0, (25)

where )(u) indicates the wave number and k is a non-zero real constant.

Definition 7. The two-dimensional generalized Helmholtz equation for h : U C
R? — R is defined as

1

&l

(Ah(u) + kQ*(w)h(uw)) | =0, (26)

where Q(u) is a non-zero C? function and k is a non-zero real constant.
The following Lemma is an equivalent version to Lemma 1 shown in [11].

Lemma 1. If fi, fo,9 : C — C are holomorphic functions of u = uy + ius, such
that (1, f1) + (g, f2) = 0. Then fi = —Z19 +ic1, fo = icag + 21, where ¢; are real
constants and z; € C.

3 Hypersurfaces with radial mean curvature

In this section, we study two classes of hypersurfaces, namely, the DRMC-hypersurfaces
and the HDRMC-hypersurfaces.

Definition 8. We say that M is a hypersurface with radial mean curvature which
depends on the distance and radius functions (in short DRMC-hypersurface) if the

relation
Hpg

1—d

+(a—c)h=0, a eR, (27)

is satisfied.
Also, we say that M is a hypersurface with radial mean curvature of harmonic type
(in short HDRMC-hypersurface) if the relation

A (iRd + (a— c)h) — 0, (28)
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is satisfied.

We observe that when Hr = 0, M is a Weingarten hypersurface of the spherical
type in Mnﬂ(c) (see [10] for more details).

Proposition 3. Let X be an orientable hypersurface of Wnﬂ(c) given by Theorem
1, where Y is a local orthogonal parametrization of M"™(c) C MnH(c). Then X
defines a hypersurface in Mnﬂ(c) satisfying

Aph + nch = %HR, (29)

where L is the metric of M™(c) given by Li; = (Y;,Y;), 1 <i,7 <n and Ay, is the

Laplacian operator with respect to the metric L.

Proof. Let ¥ be an orientable hypersurface of Mnﬂ(c) given by Theorem 1. From
(16) we obtain that the trace of the matrix V' in terms of the Laplacian operator is
given by

> Vi = Aph+nch. (30)
i=1
2
From (11), we get d = (N(p),e.) =1 — 2, hence, S = T3 Using (30) in (21) we
obtain (29). The proof is complete. O

Corollary 1. Let X be an orientable hypersurface of Mnﬂ(c) given by Theorem 1
and a € R.

(1) X is DRMC-hypersurface if and only if Aph + nah = 0.
(2) X is HDRMC-hypersurface if and only if A (Aph + nah) = 0.

(3) A DRMC-hypersurface % in WH(C) with h # 0 is a Weingarten hypersurface
of the spherical type if and only if a = c.

Proof. By Proposition 3, we get

Aph+nch = %HR = Arh+nah = %HR +n(a— c)h.

Therefore,

1
ALh+nah:O<:>1TdHR+(a—c)h:O,

NEXUS Mathematicee, Goiania, v. 4, 2021, €20009. 11
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From these expressions we get (1) and (2).

(3) If X is a Weingarten hypersurface of the spherical type then Hr = 0 and conse-
quently (a — ¢)h = 0, therefore a = c.

Conversely, if a = ¢ then ] dH r = 0. The proof is complete. m

Theorem 3. Let X be an orientable hypersurface of M”Jrl(c), n > 2 given by
Theorem 1 where Y is the local orthogonal parametrization of M™(c) C WH(C)
given by (22). Then 3 is a DRMC-hypersurface or a HDRMC-hypersurface if and

only if h is a solution of the equation given by

Ah  (n—2) B
T + 200 (VJ., Vh) 4+ anh = 0, (31)
Ah  (n—2)
= 2
. + STOAE (VJe, Vh) +anh| =0, (32)

respectively, where J. is given by (23).

Proof. By Corollary 1, we must calculate Aph (the Laplacian operator of the func-
tion A with respect to the metric L) in the parameterization Y given by (22). From
Remark 1 we have that L;; = 0,if 1 <1# j <nand Ly = J.,1 <7 <n. Thus,
from definition of Laplacian operator we obtain that

Ah  (n—2)

Aph=—" 42 h) .
S AR TAE Ve, V2

Hence, it follows (31) and (32). O

Remark 2. For n = 2, from Theorem 3 we obtain that the DRMC-surfaces and
the HDRMC-surfaces satisfy

1
1

respectively.
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In the following result we present a way to obtain DRMC-surfaces and HDRMC-
surfaces in M° (¢) using two holomorphic functions.

Corollary 2. On the conditions of the Theorems.
i) Forn=2a=1c=+l1,

1,A B
(1) the solutions of (34) are given by h = < ’1 i+|<u|’2 >, where A, B are holomor-
clu
phic functions,
1,A B
(2) the solutions of (33) are given by h = < ’1 _>|_+ |(u|,2 >, where A is a holomorphic
clu

function and B is a holomorphic function such that B = / (cA'u — cA+icy) du,

¢y 18 a real constant.
it) Forn =2,a € R,a# 0,c=0,

(3) some solutions of (33) are given by

a

Q _(e1z2ac \ultaiu) . Q
h(u) _ 01026 ( 12\z1|22>(b + )Sll'l (m(@l’dl - b1U2)) X (35)
Z1

(4) some solutions of (34) are given by

1
h(u) = _2a2|21|2€_2a(b1u1+aw2) (CoCs Ky e rtara) () cos(a(aruy — byuy))

+by sin(a(ajuy — biug))) + Cngng(aJr#) (ay cos(B(aju; — byug))
+b1 sin(ﬁ(alul — b1U2))) + 4|Zl|201026ﬁ(b11“+a1u2) X (36)

. Q
sin (W(aﬂ“ - bluz))) )
where

C1, Co, Cl, 02,03 c R, 21 =a; + Zbl € C, 0= \/C% + 4@(2‘21|2 — C1C + CLC%),
o = A5t B = ARt Ky = a(d]a]? - 20100) + eaer = Q)

K2 = CL(4|21|2 — 20102) + 01(01 + Q)

Proof. 1) We will show that the given a holomorphic function g, non-zero real con-

NEXUS Mathematicae, Goiania, v. 4, 2021, €20009. 13
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2v2|g
stants r, s with £ = rs and Q(u) = M, the functions
r+ s|g|?
(1,A) + (9, B)
h(u) = L (37)
r+s|g]

are solutions of the two-dimensional generalized Helmholtz equation (26), where A
and B are holomorphic functions.

Moreover, (37) are solutions of the two-dimensional Helmholtz equation (25) if the
holomorphic functions A and B satisfy

1
B(u) = - /(sgA' — sg' A +ic1g)du. (38)

Consider f
h = T where T = r + s|g|*. (39)

Calculating the Laplacian of h we have

_Af 1 1
=2 o orw (2 ra ().

Using the expression of T" given in (39), we get

Af 99 4slg'|* | 8s%|gg'?
Ah = T—48<Vf,ﬁ>+f(— T2 + T3

_ Af g? 712 1 27"

This equation can be written as

T2 8rs|g’|? Af g
Ve (Ah—{— T2 h) = T\g’P —4s( Vf, ? +4sf. (40)
2v/2|g’
Thus, for 2 = M, the function h = i is a solution of the generalized
o+ slgl? T

Helmholtz equation (26), if and only if

A{TAf —4S<Vf,2>+4sf} :TA(Af) —0
|g/’2 g/ ’g/|2

NEXUS Mathematicee, Goiania, v. 4, 2021, €20009. 14
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A
On the other hand, the solutions of the equation A (—f> = 0 are given by f =

9’|
(1, A) + (g, B), where A, B are holomorphic functions. Thus, we get (37).
Also, it is easy to show that (40) is equivalent to

B’ A’
<1,7’—/ P ; +sA> =0
g
From this expression we obtain
B’ A’
r—/—sg/ + sA = 1icy.
Y Y

Hence, we get (38). Therefore, (1) and (2) follows from (33)-(38), for r = a = 1,
2v/2

1+ clul*

ii) We observe that for a = 0, the harmonic and biharmonic functions are solutions

of (33) and (34), respectively.

For a # 0, we will find solutions of (33) and (34) of the form

s=c==l, g(u) = and Qu) =

h= (A, B), (41)

where A, B are holomorphic functions.

Calculating the Laplacian of (41), we get Ah = 4(A’, B’), using this expression in

(33) it follows that
] aB n 2A" B'\ 0
T A ATA)

By Lemma 1 we obtain

.- .
B = —Ztaq iy, (42)
a a
B/ = 27;CQAI+21A. (43)
From (42) . .
B =y Sy (44)
a a

Thus, from (43) and (44) we obtain

221 A" +i(2acy — 1) A"+ az A =0,
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whose solution is given by

Alu) = Oyl (P | 0 (5522, (45)

Using (45) in (42) we obtain

0

i(cl—2ic2—52)u i(cl—QZCQ-&-ﬂ)u
B(u) 50 Ci(c1 + 2acy + Q)e = + Cy(eq + 2acy — Q)e = .
(46)
Thus, (35) follows from (41), (45) and (46).
Similarly, calculating the Laplacian of (41) and using (34) we obtain
aB/ 2A// B//
1,42 2N o,
o) ()
By Lemma 1 we obtain
, 231 I iCl ’
B = ——A"+ —A) (47)
a a
B” = 2iCQAN + ZlA,. (48)
From (47) '
BII — _%AI// + EA// (49)
a a
Thus, from (48) and (49) we obtain
2z7A" +i(2acy — 1) A" +az A" =0,
whose solution is given by
o Ch i(icl_&iz_ﬂ)u Cs i(icl_%fﬁﬂ)u
Au) = —4 _ = _ = Cs.
(u) = (cl—2a02—Qe ' +c1—2a(:2—|—Q€ ' tOs
(50)
Using (50) in (47) and integrating, we obtain
) 9 Z‘(c17211c2—ﬂ)u
B(u) = ~5a2s Ci(4alz1]” —2acica + c1(c; +Q))e V= (51)
1

.(c1—2acy+Q
+Cs(4a|z|? — 2acicy + ¢ ey — Q))é( oy >“> ,

NEXUS Mathematicae, Goiania, v. 4, 2021, €20009. 16



M Hypersurfaces with radial mean curvature in space forms

Thus, (36) follows from (41), (50) and (51). Therefore, (3) and (4) are proven.
The proof is complete. O

The following result classifies the DRMC-hypersurfaces of rotation.

Corollary 3. Let ¥ be a rotation spherical hypersurface of W+1(C) given by The-
orem 8. ¥ is a DRMC-hypersurface if and only if h is given by

(1) fora=0,c=0,
C1 4 2Cy In|ul, if n =2,

h(u)=1< 2 2-n
) Wl ™ | nto.
2—n
(2) fora=0,c= 41,
Ci+2Cy In|ul, if n =2,
1
h(u) =9 Ci (Iu\2 - —> +4cCyIn Jul + Cy, if n =4,

|ul?
Cl(—c)nT%Beta (—c|u|2, Q_T", n— 1) +Cy, if n#£2,n # 4,

(3) fora#0,c=0,

h(u) = |u|'~2 (C’lBesselJ (g -1, \/ﬁ|u|) + CyBesselY (g -1, \/ﬁ|u|>> ,

(4) fora#0,c==+1,n=2,

— ac 1 - 8 1 1 - 8 ].
bu) = Cull+cluP)=F= HyR, ( N
1 ac+1 1 8 1
1—Bac+1,1+ c\uP) + Oy(1+ clu) 5 Hy R (+— V2ac+

14 /8 1
%,1 +V8ac+ 1,1 +c]u\2> ,
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(5) fora#0,c=1,n=4,

—/9%T6a 3—vV9+16a 1 —-+/9+16
) = Cula ) T g (P IS

3+/09F16a 1+ V9 + 16a
A T

1-«9+mm1+hw>+6%1+mﬁ
3+9+116
—;t——Ejl——g,l—%\/Q—%16&,1—%|uF>,

(6) fora#0,c=—1,n=4,

—/9-16a 3—vV9—16a 1—-+9—-16
hw) = G [uf) Hgm( S

v 3+/9— 16
1—¢9—mm1—hﬁ)+0ﬂqu%”3lﬁHﬂﬂ(—i—g——i
14+/9—16
—;t——%————g,1—+\/9——16a,1——]uF)‘

(7) fora#0,c==+1,n+#2n#4,

1—+/(n—1)2+4acn
2 Y

n—Ii— n— 2 acn
W) = (14cuf)™ "2 <01H9F1<

—1- —1)2+4+4
n \/(n ) + aacn E —c|u|2> +O2|u|2—nx

2 727

2 ’ 2 ’

4 —
na —C|U|2)> )
2

where HgFy, = Hypergeometric2F;.

HyF, <1—\/(n—1)2+4acn 3—n—+/(n—1)2+4acn

Proof. From Theorem 4.17 in [10], we get that for n > 2, h is a radial function i.e.

h(u) = f(t), t =|ul>
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Differentiating the functions h and J., we obtain

0, ifc=0,
Ah =4tf"(t) + 2nf'(t), Vh=2uf'(t), VJ. = 16cu o 41
T T
Using these expressions in (31) we obtain
4ef"(t) + 2nf'(t) + anf(t) =0, for ¢=0, (52)

) =
(n+ ct(d—n) (1) 2enf()

2t f"(t =0 = +£1. 53

1) + 1+ct (14 ct)? » Jor ¢ (53)
Now we will find the solutions of equations (52) and (53).
Case: a = 0.

The solutions of (52) are given by

for n =2
f(t) =C1+ Cylnt,
for n # 2
203"
) = .
f)=—5——+G
The solutions of (53) are given by
forn =2
f(t) =(C) + CyInt,
forn =14 1
ft)y==C¢ (t — ;) + 2cCiInt 4 Oy,
form #2,n #4
n-2 2—n
f(t) = 01(—0) 2 Beta <—Ct, T,n — 1) + Cs.
Case: a # 0.

The solutions of (52) are given by

ft) = 24 (ClBesselJ (— -1 \/W) + CyBesselY (5 -1 \/W))

The solutions of (53) are given by
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8ac+1) 1 —/8ac+ 1)
2 ’ 2 ’

) = Ci(1+et)y =5 HgF1<1_

v8ac+1

— VBac + 1,1+ct> FC(l4ct) T x

HgF1 (

forn=4,c=1

9+16a

3—\/9+16a 1—+9+ 16a

) = G+ -

HgFl(

— 9+ 16a,1 +t> 4 Cy(1+ )7”“‘” x

HgF,

forn=4,¢c= -1

9 16a

ft) = Ci1— )= Hgm(

— V0= 16a,1—1) +Cg(1—t) S

3—\/9—16a 1 -9 —16a
) 2 )

3+ /0—16a 1+/0—16
HgFl( + " + . a,1+\/9—16a,1—t),

forn #2,n#4

1—+/(n—1)2 +4acn
2 )

n—1—/(n—1)2+4acn
ft) = (4et) T2 (

CiHgly (

n—1—+/(n—1)2+4acn n
2 "2

, —ct) 1 Cot 2" x

HoF, (1—\/(n—1)2+4acn 3—n—+/(n—1)2+4acn

2 ’ 2
4—n .
—c )
2 )

1+ 1 1++/8 1
+ 2@0—1— 7 + Qac—i— ey /—8ac+1,1+ct>,

<1+\/92+16a73+\/§;—|—16a,1+\/m’1+t)’

Y
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The proof is complete. O

Remark 3. From Theorem 3, in the case of HDRMC-hypersurfaces of rotation, the

equation (32) is equivalent to

SEEFW (1) + 8(n + 2)tf"(t) + 2n(n + 2 + at) f/(t) + an’f(t) = 0, ifc = 0,54)
A2 (1+ct)* fD(t) + (326° + 4ct?(n + 10) + 4t(n + 2)) £ () (55)
+ ((56 + 2n — n®)t* + 4(8¢ + an + 3cn)t + n® + 2n) f"(t)
8a(l —n)tf(t)
(1+ct)?

+ (2(4 = n)(n+2)t 4+ 2an® + 4en) f'(t) + =0, ifc==+1.

The following result classifies the HDRMC-hypersurfaces of rotation for ¢ = 0

i.e. when WnH(O) = Rt

Corollary 4. Let X be a rotation spherical hypersurface of MnH(O) given by The-
orem 8. ¥ is a HDRMC-hypersurface if and only if h is given by

(1) fora=0,
[ (Cy — C)|ul? + 2(Ju|2Cy — C) In|u| + Cs, if n =2,
Calul? (3Cy — V15C1) cos (\/1_5111 |u|) + (V1505 + 3CY) sin (\/ﬁln |u])
u —
h(u) — 4 24]u\
+03, Zf n = 4,
4 2—n —4 2
[ ((n JC1 + nCalu’) +C’4|u|2+03,ifn7é 2,n # 4,
\ n(n —2)(n —4)
(2) fora#0,
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2aCh In [u| — 2Cy BesselJ (0,v/2alu|) — 4CsBesselY (0, v/2alul) +2Cy

a
—|—C4, ’Lf n = 2,

—203M€ij€TG ({{0}7 {_%}} ) {{07 0}7 {_17 _%}} ) \/a|u|’ %)
 CyBessell (1,2v=alu])

J— C . — 4
V=alul |u|2(+) o if =4,
o () CoGamma (2) .
i (e Ot ) (ot 27w
2
BesselJ (%52, \/an|u|) Gamma (%)) — % (2anCy — 4Cs(n — 2)

+Con(n — 2)2Gamma (—%) HgF\R <4*T”, —%))) + Cy,
if n#2,n # 4,

where HgF\ R = HypergeometricOF1Regularized.

Proof. Similarly to the proof of Corollary 3, from Theorem 4.17 in [10], we get that
for n > 2, h is a radial function i.e. h(u) = f(t), t = |u|*.
On the other hand, from Remark 3 the expression (32) is equivalent to (54), thus,

we will find the solutions of this equation.

The solutions of equation (54) are given by

fora=0

\

Cat —

—|—Cg, if n= 4,
472" ((n — 4)Cy + nCat)

(04 — Og>t + (tCQ — Ol) Int + 03, if n= 2,

(3Cy — V/15C1) cos (@) + (v/15Cy + 3C1) sin <_\/1?;1nt>
244/t

if 2 4
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(aCyInt — 2CyBessel J (0, vV Qat) — 4C3BesselY (O, vV 2at) + 20,

a
+CYy, if n=2,
—2C5MeijerG ({{0},{=3}}, {{0,0},{~1,-3}}, Vat, })
CzBesselI(l,Q\/—iaﬂ C .
_ — =L+ (0, if n=4,
) =9 =3 QWant)ZCthamm;(ﬂ)
22 (2(ant)® — 22V ant
an ( Gamma (”T“) ( (ant) ant

BesselJ (%52, Vant) Gamma (2)) — -2 (2anCy — 4Co(n — 2)
+Con(n — 2)*Gamma (—%) HgFi R (352, —4))) + Cy,

[ ifn#2,n#4.

The proof is complete. O

4 Conclusions

The DRMC-hypersurfaces and the HDRMC-hypersurfaces in space forms Mnﬂ(c),
c = —1,0,1 generalize the Weingarten hypersurfaces of the spherical type studied by
[10]. In the case n = 2, using two holomorphic functions a way to construct DRMC-
surfaces and HDRMC-surfaces in M3(c) is obtained. Finally, as a first step, we clas-
sify the DRMC-hypersurfaces of rotation in MHH(C) and the HDRMC-hypersurfaces
of rotation in R"™. It would be interesting to study DRMC-hypersurfaces and
HDRMC-hypersurfaces with some geometric properties such as embeddededness,
completeness. In this sense, future research is being carried out.
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