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On Spherically Symmetric Douglas Metrics with

Vanishing S-curvature with Explicit Examples

Sobre Métricas de Douglas Esfericamente Simétricas com S-curvatura
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Abstract: We obtain the differential equations that characterize the spherically
symmetric Douglas metrics with vanishing S-curvature. We study these equations

and obtain conditions on such metrics. Many explicit examples are included.
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Resumo: Obtemos as equagdes diferenciais que caracterizam as métricas Douglas esferi-
camente simétricas com S-curvatura nula. Estudamos essas equagoes e obtemos condicoes
sobre tais métricas. Muitos exemplos explicitos estao incluidos.
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1 Introduction

Z. Shen introduced the notion of S-curvature of a Finsler space in [11]. Tt is a
quantity to measure the rate of change of the volume form of a Finsler space along
the geodesics. The S-curvature is a non-Riemannian quantity, i.e., any Riemannian
manifold has the S-curvature vanishing everywhere. It is well known that, for a
Finsler metric F' of scalar flag curvature, if the S-curvature is almost isotropic, i.e.,

S=(n—-1)cF +n,
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where ¢ = ¢(z) is a scalar function and 7 is any closed 1—form, then the flag

curvature must be in the following form

3Cy,, Y™

K =
F

+ o,

where 0 = o(z) and ¢ = ¢(z) are scalar functions with ¢ — ¢ = constant [1].

A Finsler metric on a manifold M is a Douglas metric if its Douglas curvature
vanishes. The Douglas curvature was introduced by J. Douglas in 1927 [2|. Its
importance in Finsler geometry is due to the fact that it is a projective invariant
quantity. Namely, if two Finsler metrics F and F are projectively equivalent, then
F and F have the same Douglas curvature. The class of Douglas metrics contains
all Riemannian metrics and the locally projectively flat Finsler metrics.

On the other hand, let M be the open ball B"(v) := {z € R" : |z| < v}, or
the annuli domain B(r;)\ B(1»), both centered at the origin, or the euclidean space
R"™, where oo > v > 0 and v; > 15 > 0. | - | is the standard Euclidean norm.

Finsler metrics defined on M satisfying
F(Az, Ay) = F(z,y), (1)

for all A € O(n), are called spherically symmetric (orthogonally invariant in an
alternative terminology in [10]). Such metrics were first studied by Rutz in [7].

In [6] it was obtained all the spherically symmetric Douglas metrics on a sym-
metric subspace of R”, and we can see that there are a lot of them.

In this paper, we first characterize Douglas metrics with vanishing S-curvature
and Berwald metrics, in terms of a differential equation System (Theorem 1 and
Theorem 2). Then comparing these systems we conclude that they are equivalent,
and finally we obtain all the spherically symmetric Douglas metrics with vanishing
S-curvature (Theorem 3).

From examples of Douglas metrics, we obtain new examples of Berwald metrics
(see Section 6, below |-| and (-, -) are the standard Euclidean norm and inner product
on R"):

— [l®lorgdr

F(z,y) = clyle Jo 29" (2)
T,y Y

F(Z’,y) = Cl<‘l”2> + CQ% (3)

see Corollary 1, which is more treatable than the second case of Theorem 3, it
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provides this notable non-Riemannian Berwald metric

It is convenient to mention that in [14] the author characterized Douglas metrics

with isotropic S-curvature. Unlike this article, we gave alternative techniques to

the one used in [14] and additionally we presented several non evident examples of

Douglas metrics with vanish S-curvature. Then, the spirit of this paper is to give a

new tool for the better understanding of spherically symmetric Finsler metrics.
Firstly we introduce the notation

A )

= |z 5=

where | - | and (-,-) are the standard Euclidean norm and inner product on R™. In
Section 4, we prove the following Theorems.

Theorem 1. On M?, a spherically symmetric Finsler metric F(x, y) = |y|o(r, s)
s of Douglas type with vanishing S-curvature if, and only if, ¢ satisfies

(12 = 8%)(29 + [5%) — 1] 1¢ss — Shrs + r +7(29 + [5°)(¢ — 5¢5) =0,  (6)

[1= (% = s%) (29 + f5°)] rés + 56, — 15(29 + 5°f)

o[ (g o) oo g

where r and s are defined in (5), f = f(r) and g = g(r) are some differentiable
functions, and Ay(|z|)dx is the volume form of F.

There are two important volume forms in Finsler geometry. One is the Busemann-
Hausdorff volume form and the other is the Holmes-Thompson volume form.

Theorem 2. On M, a spherically symmetric Finsler metric F(z,y) = |y|o(r, s) is
Berwald type if, and only if, ¢ satisfies:

[(TQ — %) (29 + f5°) — 1} Tss = 5¢rs + O +7(29 + f57) (¢ — 505) =0, (8)

[1 — (r* — 5%)(2g + fs2)] ros + S¢, — sr (29 + st) ¢ —2rsL(r)p =0, (9)

where r and s are defined in (5), f = f(r), g = g(r) and L(r) are some differentiable
functions.
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By using the characteristic curves, our next result provides how is the form of ¢,
which is solution of (6) and (7).

Let f(r) and g(r) be differentiable functions, for convenience we define I = I(r)
and I] = II(r) for r < v as:

I= /27’(2g + 72 f)dr and II= /27"f€f27"(29+’"2f)drd7" (10)
and additionally we suppose that
(r? — sHII(r) —e!™ £0, V(r,s) €[0,v) x (—v,v). (11)

In Section 5, we prove the next theorem.

Theorem 3. Let f(r) and g(r) be differentiable functions of r € J C R such that I
and I in (10) are well defined and (11) is satisfied. Suppose F(z,y) = |y|o(r, s) is a
Douglas type with vanish S-curvature (with respect to Busemann-Hausdorff volume
form), then, up to homothety, we have:

1. If g # 55,

T 7"2 T T 7’2 T
\/‘(Iﬂﬂlzlyl2 — (z,)?) /27“f6f2 Cotri Dy — e 2rotridrpy 2

F(z,y) = ,
7“2/27“f€f 2r(2g+r2f)drdr . ef?r(29+r2f)dr
(12)
2. If g = #,
VIEPlYP = (2.9)°  (aPlyl = (2.9)° _jas
F — ) ) J2r3 f(r)dr 13
(z,y) P n TRTE : (13)
where n s any differentiable function, such that:
2 _ g2 (r2 — s2)3/2 g
3T77’ +2 5 e” S S 0 when n > 2, (14)
with the additional condition
0/r2 — 52
ALl 5 e St n' >0 when n > 3. (15)

JEo# s

By using the Formula (13) and inspired by Example 3, we have,
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Corollary 1. Let ¢(r,s) defined by:

o) = (075 + a3 ) a0 5) gl ),

where ¢y and ¢y are real constants and 7 is any smooth function of v1(r,s) = s

and ps(r, s) = \/rjﬁ Then ¢(r, s) satisfies Equations (8) and (9) with f(r) = 0.

Remark 1. Ezamples 8 and J are type (13).

L. Zhou [14], showed that every spherically symmetric Landsberg metric is of
Berwald type.

By definition, S-curvature S(y) measures the average rate of changes of (7, M, F,)
in the direction of y € T, M. An important property is that S = 0 for Berwald
metrics with respect to the Busemann-Hausdorff volume form dVpgy (see [11], [8]).
Then, from Theorem 1 and Theorem 2 we conclude that every spherically symmetric
Douglas metric with vanishing S-curvature are Berwald (Landsberg) metric.

Theorem 4. Let F' = |y|o(r, s) be a spherically symmetric Finsler metric, then it
s of Douglas type with vanish S-curvature on M7 if, and only if, it is of Landsberg
type, and ¢ is characterized by Theorem 3.

Corollary 2. Let F' = |y|o(r, s) be a spherically symmetric Finsler metric defined
on R", then F is Berwald type if, and only if, it is of Riemannian type given by

(12).

The next corollary surprisingly characterizes the Busemann-Hausdorff volume
form of Berwald metrics in the second case of Theorem 3.

Corollary 3. Let F' = |y|¢(r, s) be a Berwald metric of (13) type, then the Busemann-
Hausdorff element of volume, Ay(r), up to homothety, is given by

efr3fd7"
Ay(r) =

TTL

Remark 2. When the volume form is of Holmes-Thompson type, the characteriza-
tion Theorem 8 can be rewritten by adding in the Item (ii) the condition about f(r)

and () i
cel i fdr
Ay(r) = ——,

,rn
where Ag(r)dx is the Holmes-Thompson volume form given in the Proposition 1,
and c is a positive real constant.
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2 Preliminaries

In this section, we give some definitions and lemmas that will be used in the proof
of our main results.

Let M be a manifold and let TM = U,/ T, M be the tangent bundle of M, where
T, M is the tangent space at € M. We set T M, := T M\ {0}, where {0} stands for
{(z,0)]x € M,0€ T, M}. A Finsler metric on M is a function F : TM — [0, 00)
with the following properties

1. Flis C*° on T'M,;

2. At each point x € M, the restriction F, := F|r, s is a Minkowski norm on
T,M.

Let FF = F(x,y) be a Finsler metric on an n—dimensional manifold M. Let

G =y —2G° 831- denote the spray of F. The spray coefficients G* are defined by

G' = Zgzl [F2]xjylyj - [F2]xl} :

A Finsler metric F' on M™(v) is said to be spherically symmetric if it satisfies (1)
for all z € B"(v), y € T,B™(v) and A € O(n). In [13], Zhou (see also [4]) showed
the following:

Lemma 1. [}/ A Finsler metric F on B™(v) is spherically symmetric if, and only
if, there is a function ¢ : [0, v) x R — R such that

Flaa) = blo (1o 2.

where (z,y) € TB"(v) := TB"(v)\{0}.

Note that spherically symmetric Finsler metrics are general («, §)-metrics stud-
ied in [9].
A Finsler metric on a manifold M is called a Douglas metric if its geodesic
coefficients G* = G*(z, y) are in the following form
i Lo i,k i
G = SUw(@)y'y" + Ple, y)y',
where F;k(x) are functions on M, in local coordinates, and P(z, y) is a local posi-

tively y-homogeneous function of degree one, if P = 0 then the metric F' is called
Berwald metric.
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A straightforward computation shows the following result that was proved inde-
pendently in [3], [5] and [12].

Lemma 2. Let F' = |y|¢ <|x|, <ﬁy?)> be a spherically symmetric Finsler metric on

B"(v) C R™. Letx',--- 2" be the coordinates on R"™ and denote by y = > y'd/0x;.
Then its geodesic coefficients are given by

G' = |ylPy' + |y*Qx’, (16)
uhere L 1w — ¢, + 56 (z.9)
T TQss — Qr T SQPrs . . M
Q L 2r¢ - $¢3 + (7'2 o 52)¢557 r |$|, S ’y| (]‘7)
and
s+ 50, Q
P = % — g [8¢+ (7"2 — 32)¢s:| .

The Busemann-Hausdorff volume form dVpy = opy(z)dz is given by

Wn

 Vol{(y) € R*|F(z,y' ) < 1}

UBH(iL')

and the Holmes-Thompson volume form dVyr(x) = oy (z)dx is given by

1
o) = — / det(gi;)dy.
{(y)eR"|F(z,y’

w 3
n Bzi)<1}

Here Vol denotes the Euclidean volume and
1 —1 1 o [T
wy = Vol(B"(1)) = =Vol(S" ") = =Vol(S"™°) [ sin" *(t)dt
n n 0

denotes the Euclidean volume of the unit ball in R™.

For a general (a, f)-metric we have the following formulas for the volume forms
dVBH and dVHT.

Proposition 1. Let F' = a¢(f, 5/a) be a general (o, ) metric on an n-dimensional
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manifold M. Let dV be or dVgy or dVgr. Let

( /W sin"?(t)dt
T if dV =dVpy
T osin" 5 (¢)
|, i
/Ow(sin”_Q(t))T(b cos(t))dt
/7T sin” 2 (t)dt

where b = ||B||a and T(s) := ¢(¢— s¢2)" 2[(¢— s¢2) + (b* — 8*)as]. Then the volume
form dV is given by

(18)

if AV = dVir,

AV = A(b)dV,,
where dV,, = y/det(a;j)dx denotes the Riemannian volume form of a.

The next result is given in [6].

Lemma 3. [6] Given f(r) and g(r) differentiable functions, such that I and II in
(10) are well defined, then

[1 — (r* — s%)(2g + s2f)] ris(r, s) + st (r,s) =0 (19)

15 equivalent to
w(ﬁ 5) = 77(90(7’7 8)))7 (20)

where n s any differentiable real function of

P2 g2
ol e) = (r2 — s2) [ 2r fel 2rQ@atr2Ddr gy — of 2r(gtr2 fdr”

(21)

A variation of the last lemma:

Proposition 2. Let f = f(r), g = g(r) and L(r) be differentiable functions of
r € (0,70) such that L(r) is integrable and conditions (10) hold. Then, for r # s, a
positive function ¢(r,s) defined on (0,79) x R satisfies

[1— (= s")(29+ 5° ))]ros(r, 5) + s, (1, 5) — s[r(2g + 5° f) + L(r)]¢(r, s) = 0, (22)

if, and only if,

o(r,s) = el T2 — 2 ),

NEXUS Mathematica, Goiania, v. 2, 2019, e19001. 8
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where 1 is any positive function of ¢ defined in (21).

Proof. Observe that Equation (22) is equivalent to next transport equation:

[1— (r* — 5%)(29 + 8*f)]reos(r, s) + stp.(r, s) = 0,

where
e~/ Lo gy, )

r2 _ g2

e(r;s) =

3 Douglas curvature, S—curvature and Berwald cur-

vature of spherically symmetric Finsler metrics

In [2], Douglas introduced the local functions D", on TB™(v) defined by

, 3 , 1 oG™ .
D'y = ————— | G — ! 23
IR oy dyk oy ( n+1 zm: oym y) ’ (23)
in local coordinates z',--- 2" and y = >, y'd/0z". These functions are called

Douglas curvature [2] and a Finsler metric F is said to be a Douglas metric if
Djikl = 0

A Finsler metric F is said Berwald metric if B?;; = 0, where

. PG
P Gyiogoy

Let dV = o(z)dzx be the volume form of (M, F'), then the S-curvature (with
respect to dV) is defined by

oG™ 0

5= Gy Y ggm

(Ino).

The S-curvature is associated with a volume form.

NEXUS Mathematica, Goiania, v. 2, 2019, e19001. 9
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4 Spherically symmetric Douglas metrics with van-

ishing S-curvature

In our next result, we obtain the Douglas curvature and the S-curvature of a spher-
ically symmetric Finsler metric on M with respect to Busemann-Hausdorff volume
form.

Now, we are going to discuss necessary and sufficient conditions for a spherically
symmetric metric to be Douglas type with vanishing S-curvature.

In [6], we prove the following:

Lemma 4 ([6]). On M

. a spherically symmetric Finsler metric F(z,y) = |y|o(r, s)

15 of Douglas type if, and only if, ¢ satisfies

[(7’2 — 5%)(2g + fs*) — 1] Tss — SPrs + O +1(29 + f52) (¢ — s5¢5) = 0, (24)

where v and s are defined in (5), f = f(r) and g = g(r) are some differentiable
functions.

A direct computation gives the expression of S-curvature, presented in Lemma

Lemma 5. Let F' = |y|o(|z, <Ty3|’>) be a spherically symmetric Finsler metric on

B"(v) C R™. Then the S-curvature of F is given by

S = blltn+ 1P +25Q + (% = )0, - ol 5 (25)

where r and s are defined in (5), Q and P are defined in Lemma 2.2, and A(r) :=

o(x).

Proof of Theorem 1.1. Note that Equation (6) is equivalent to @ = g(r)—{—%f(r),
so we replace it in (25), and conclude the proof of Theorem 1.1. O

Lemma 6. Let F' = |y|¢(r, s) be a spherically symmetric Finsler metric on M then

NEXUS Mathematicae, Goiania, v. 2, 2019, e19001. 10
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F' is a Berwald metric if, and only if,

. sP, i . ’
)z e { O+ (09)20) )

jkl

Pes o po (P — sPy)
0= o (2 5l)jkl + Y

1 A A 1 ,
+ " {—P+sP,+ 5P} (y]yk(ﬁ)j—ki + 3 {-P+sP,+ 5P}y (5jky1)ﬁ

J
1 i 1 Psss i i
+ —= {3P — 3sP, — 6s*P,, — SSPSSS} yzykylyZ + —2:cjszth'lyZ
U U
S . i 1 . s
+ E {3Pss + SPSSS} (ijkyl)]_kf Yy + @ {_Pss - SPSSS} (x]xkyl)m Yy

Proof. The proof is analogous to the proof of the Proposition 3.1 given in [6], and
remembering that every Berwald metric is a Douglas metric. O]

The previous lemma is equivalent to

Lemma 7. Let F' = |y|o(r,s) be a spherically symmetric Finsler metric on M,
then F is of Berwald type if, and only if, there exist L := L(r), f := f(r) and
g :=g(r) such that

1
PZL? Q:§f82+g

Proof of Theorem 2. Lemma 7 is equivalent to Theorem 2. O

5 Proof of Theorem 3

By Equation (9) and Proposition 2 the next identity must be satisfied:
o(r,s) = el IV — 2 (p(r, 5)) (26)

for some differentiable function 7 of ¢. Combining (26) with (6), we obtain that the
next identity must be satisfied too

[27’ + T’2L(T)] (r2 — 32)7)(go) — o 2rQg+r2f)dr [47‘ — 47’29(7”2 — 82) + 232L(r)] g0277/(g0).
(27)
If L(r) = —2 then g = 55, and we obtain (i) of Theorem 3.

2027

Observe that if g(r) = 55 and L(r) # —2 then we can rewrite (27):

ns((r, 5)) r’

n(e(r,s))  s(r? —s?)

NEXUS Mathematicze, Goiania, v. 2, 2019, ¢19001. 11
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Integrating the last equation with respect to s we have:

c(r) ‘S‘

n(p(r,s)) =e \/ﬁ’

where ¢(r) is a constant of integration in s. This function does not define a Finsler
metric (¢(r, s) — sos(r,s) = 0).
If L(r) # —2, then identity (27) can be rewritten as
n(e) el 2r(2g+r?f)dr

2 (9) = (2 = %)@ + 12L()) (4r — 4r2g(r® — s%) 4+ 2s°L(r)). (28)

By Lemma 3, the right hand side of (28) should satisfy the transport equation:
[1— (r* = $°) (29 + $*f)] ribs(r, s) + stb,(r, s) = 0. (29)

Then, a straightforward computation shows
ra(r)Ly(r) — ra(r)L*(r) + (rb(r) — a(r))L(r) 4 2b(r) = 0, (30)

where a(r) := 2r2g(r) — 1 and b(r) := —2r%¢'(r) — 4r3(2g9(r) +r2f(r))g(r) +2r3 f(r).
If we see Equation (28) as an ODE for L(r), then we obtain a necessarily condi-
tion for L(r).
Observe that —2 is a particular solution of the Ricatti Equation (30). Conse-
quently we obtain the general solution

b(r)
9 —f a(r)dr
L(r)=—-=— el — . (31)
"o (/ —,e_fa(”drdr)
3
Using the last identity, (28) can be rewritten as:
20,2 _ 2y, ) Zdr
ns(p(r,s)) _ 2s —r(rf —s%)e T @
T (2 _ o2)2 1 b(r) b(r) o
77(()0) (’r S ) 4,',,2a<r)(82 _ 7‘2) (/ _Se_fa(r)drd/r‘) _ 282€_fa(r)d7‘
r
Integrating in s the last identity, we can obtain how should look like 7(p):
] 1
b(r) b(r) 2
4r2a(r)(s* —r?) (/ —36_IG(T>drdr> — 252 amydr
r
n(e(r, s)) = T(r), (32)

r2 — g2

NEXUS Mathematicze, Goiania, v. 2, 2019, ¢19001. 12
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where T'(r) is a constant of integration in s, and in order to the last identity makes
sense (see Lemma (3)), then T'(r) must be

1
27“]27"2g — 1\%’

where C is a positive real constant. Once the following equations are satisfied,

b(r) 4
1 _ e, e*f a(r ¢ —r b(r)
/ o [ B + f o1 Mar

73 2r2a(r) a(r)

and
e—f%dr _ |a(T)|€f2r(29+r2f)dr7

we obtain (12), up to homothety.

We observe that C. Yu and H. Zhu, [12], gave necessary and sufficient conditions
for ' = a¢(||Bel|a, g) to be a Finsler metric for any o and § with ||5|la < bo. In

particular, considering F(x,y) = |y|o <]:1:\, m ), then F' is a Finsler metric if, and
only if, the positive function ¢ satisfies

B(r,5) — s504(r, 8) + (r* — 5%)ss(r,5) > 0, when n > 2,
with the additional inequality
o(r,s) — sps(r,s) > 0, when n > 3.

Therefore, when ¢ is given by (13), F' defines a Finsler metric if, and only if, the
Inequalities (14) and (15) hold. ]

6 Examples

Example 6.1. Considering f(r) = g(r) = 0 in Theorem 3 we obtain, up to homo-
thety, the next projectively flat metric with vanishing S-curvature:

F(z,y) = \/|201(|90|2|y|2 —{x,y)?) — c2|y)?]

|calz]® — i

: (33)
where ¢; > 0 and ¢, are any real constants such that

21 ([aPyl* — (z,9)*) —calyl? #0 and  ooz[* — 1 #0.

NEXUS Mathematicae, Goiania, v. 2, 2019, e19001. 13
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From the Douglas metric:

||

F(i[},y) = <x’y>h(’$‘) + c\y]e*fo 27‘gdr,
where ¢ is any positive real constant. We obtain the next examples:

Example 6.2. Considering h(|z|) = 0, the Douglas metric

Fa,y) = cly|e oo

has vanishing S-curvature.

Example 6.3. Considering an annuli domain B"(v1)\B"(1»), (11 > vy > 0), and
g(r) = 5, the corresponding Douglas metric

F(z,y) = (zy) 4—02M

|2 ]

has vanishing S-curvature.

Example 6.4. Considering an annuli domain B"(v,)\B"(1s), (11 > e > 0), g(r) =
75 and (1, ¢2) = e?1” +5, in the Corollary 1, we have that the next Douglas

X, |22 ]y|? = <w,y>2
rie) = (5 ) (5 +)

has vanishing S-curvature.

metric

Remark 3. An interesting consequence of the Example 6.1 is that on R", F(x,y)
s projectively flat metric with vanishing S-curvature if, and only if, up homothety,

F(x,y) = [yl.
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