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Abstract: An adversarial autoencoder conditioned on known parameters of a physical modeling bowed string syn-
thesizer is evaluated for use in parameter estimation and resynthesis tasks. Latent dimensions are provided to cap-
ture variance not explained by the conditional parameters. Results are compared with and without the adversarial 
training, and a system capable of “copying” a given parameter-signal bidirectional relationship is examined. A real-
-time synthesis system built on a generative, conditioned and regularized neural network is presented, allowing to 
construct engaging sound synthesizers based purely on recorded data.
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Sounderfeit: Clonagem de um modelo físico com auto-encoders adversários condicionais 
Resumo: Neste artigo avaliamos um autocodificador adversarial condicionado através dos parâmetros conhecidos de 
um sintetizador por modelagem física de cordas friccionadas em sua utilização na estimativa de parâmetros e pro-
cessos de ressíntese. Dimensões latentes são fornecidas para capturar a variação não explicada pelos parâmetros con-
dicionais. Comparamos os resultados com e sem o treinamento adversarial, e examinamos um sistema capaz de “co-
piar” uma relação bidirecional entre parâmetros o sinais. Apresentamos um sistema de síntese em tempo real cons-
truído em uma rede neural generativa, condicionada e regularizada; viabilizando a construção de sintetizadores de 
som baseados puramente em dados gravados.
Palavras-chave: Modelagem física, síntese sonora, autocodificador, parâmetros latentes

1. Introduction

This paper explores the use of an autoencoder to mimic the bidirectional parame-
ter-data relationship of an audio synthesizer, effectively “cloning” its operation while regu-
larizing the parameter space for interactive control. The autoencoder1 is an artificial neural 
network (ANN) configuration in which the network weights are trained to minimize the 
difference between input and output, learning the identity function. When forced through 
a bottleneck layer of few parameters, the network is made to represent the data with a low-
-dimensional “code,” which we call the latent parameters.

Recently adversarial configurations have been proposed as a method of regulari-
zing this latent parameter space in order to match it to a given distribution (MAKHZA-
NI, 2016). The advantages are two-fold: to ensure the available range is uniformly covered, 
making it a useful interpolation space; and to maximally reduce correlation between para-
meters, encouraging them to represent orthogonal aspects of the variance. For example, in a 
face-generator model, this could translate to independent parameters for hair style and the 
presence of glasses (RADFORD; METZ; CHINTALA, 2015).  Meanwhile, it has also been 
shown that a generative network can be conditioned on known parameters (MIRZA, 2014), 
to make it possible to control the output, for example, to generate a known digit class when 
trained on MNIST hand-written numerical digits.

In this work, these two concepts are combined to explore whether an adversarial 
autoencoder can be conditioned on known parameters for use in both parameter estimation 
and synthesis tasks for audio. In essence, we seek to have the network simultaneously le-
arn to mimic the transfer function from parameters to data of a periodic signal, as well as 
from data to parameters. Latent dimensions are provided to the network to capture varian-
ce not explained by the conditional parameters; in audio, they may represent internal state, 

Revista Música Hodie, Goiânia - V.18, 165p., n.1, 2018 Recebido em: 27/11/2017 - Aprovado em: 05/03/2018



SINCLAIR, S. Sounderfeit: Cloning a Physical Model using a Conditional Adversarial Autoencoder
Revista Música Hodie, Goiânia, V.18 - n.1, 2018, p. 44-60

45

stochastic sources of variance, or unrepresented parameters e.g. low-frequency oscillators.  
The idea of using adversarial training to regularize the distribution of the latent space is 
to find a configuration such that the parameters are made to lie in a predictable range and 
uniformly fill the space, in order to provide a system suitable for live interaction.

For the principal test case herein, we train the autoencoder on waveform periods 
from a physical modeling synthesizer based on a model of the interaction between a string 
and a bow. The goal is to produce a black-box parameter estimator and synthesizer that bo-
th “listens to” (estimates physical parameters) of an incoming sound and reproduces it, with 
a parameter space optionally informed by the original parameters. Application of the archi-
tecture described here is of course not limited to physical models, but may be applied to any 
periodic sound source; a physical model was chosen for its ability to produce fairly complex 
signals from a simple parameter mapping, and the periodic requirement comes mainly from 
needing a constant size for the input and output network layers. Results are visualized and 
some informal qualitative evaluations are discussed. The autoencoder was able to reprodu-
ce the steady state of the synthesizer with and without regularization, although reproduc-
tion error increased, expectedly, in the presence of regularization. Some parameter estima-
tion problems were identified with the dataset and sampling method used, and we conclu-
de with some lessons learned in the art of “synth cloning”. A real-time system, Sounderfeit, 
built on a generative neural network is presented, allowing to construct engaging sound 
synthesizers based purely on recorded data and optional prior knowledge of parameters.

2. Previous work

Previous publication of this work (SINCLAIR, 2017) did not fully compare the re-
sults with related literature in the audio domain, and therefore in this extended version we 
include a more thorough overview of related work in this section. Indeed this work combi-
nes two ideas that have been previously investigated, that of parameter estimation, and that 
of ANN-based audio synthesis.

Note that in the following we skip mention of several works that make use of simi-
lar ANN approaches for classifying sounds; in fact quite a lot of this work is available in 
the music information retrieval literature, and thus we restrict the discussion to papers that 
specifically discuss parameter estimation and audio synthesis. Parameter estimation for 
physical modeling is a well-researched topic, however it typically leverages known relations 
between observable aspects of the signal and physically relevant parameters, c.f. (SCHER-
RER; DEPALLE, 2011). The application of black-box, ANN-based models is until recently ra-
ther less common, but several works can be found in the literature. The intuition in such an 
approach is that since a physical model represents a non-linear, stateful transformation of 
the parameters, the generated signal tends to be difficult to separate into effects originating 
from specific parameters, thus an arbitrary non-linear multivariate regression based on kno-
wn data is a more pragmatic approach to constructing such an inverse mapping.

For example, Cemgil and Erkut (1997) investigated the application of ANN for esti-
mating the parameters of a plucked string model. Also in this vein, Riionheimo and Väli-
mäji (2003) used a genetic search strategy for finding similar parameters. They employed a 
perceptual model as their error metric in order to better measure distance between sets of 
parameters as perceived by humans. A parameter space quantized (also according to a per-
ceptual model) was used. Similarly, Gabrielli (2017) used a multilayered convolutional neu-
ral network (deep CNN) to determine parameters of an organ physical model that supports 
up to 58 parameters (organ stops) per key. Short-time Fourier spectra were used as input cal-
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culated from a dataset of 2220 samples, and the network was trained to minimize the mean 
squared error on the parameter reconstruction. A notion of spectral irregularity was used 
to judge the similarity of resulting synthesized sounds. Pfalz and Berdahl (2017) explored 
the use of a long short-term memory recursive neural network (LSTM-RNN) to estimate the 
continuous control signals from the output of a physical model. Mean squared error of the 
reconstructed parameters to the original parameters is used as the loss. It was successful 
at determining trigger times and parameters for fairly simple plucked gestures with several 
types of resonator models over a few seconds of time, but generated spurious triggers when 
trained on more complex musical gestures.

Regarding generation of audio using neural networks, generally two approaches 
are used: either (1) generation of pulse-coded audio one sample at a time using a sequential 
model, e.g. an autoregressive model or a recursive neural network (RNN); or (2) generation 
of audio frames in the form of spectra or spectrograms (series of spectra). The current work 
takes an alternative approach, (3) generation of pulse-coded time-domain audio frames.

An example of the first technique, sample-at-a-time synthesis, is WaveNet (OORD, 
2016), in which a multilayered CNN with exponentially dilated receptive fields is used to 
model progressively short- to long-term dependencies in the audio stream. The “receptive 
field” is enlarged exponentially at each layer using dilated causal convolutions. This configu-
ration may be conditioned on external variables, for example speaker identification, phone-
me information, musical style, etc. In addition to testing this model on speech coding, it was 
later used in an autoencoder configuration, dubbed NSynth, in a way quite comparable to 
the current work, that is, to encode and reproduce musical instrument tones (ENGEL, 2017). 
Their analysis goes into depth on the qualities of reconstruction compared to a baseline mo-
del, which itself is also a deep CNN described below, and describes some temporal aspects of 
the learned latent space, as well as the qualitative effects of latent-space interpolation.

In comparison, another example is SampleRNN (MEHRI, 2016), which used multi-
-scaled deep RNNs to capture long-term dependencies as a stacked autoregressive model, 
i.e., it encodes the conditional probability distribution of the next sample based on previous 
samples and encodings produced by other layers. The multiple scales allow this sample-
-at-a-time model to also take into account frame-level information, and can therefore use 
higher levels to encode longer-term dependencies. It was compared to WaveNet and a stan-
dard RNN with Gaussian mixture model in terms of reconstruction mean squared error, 
and with human listening preference experiments on encodings of voice, human non-vocal 
sounds, and piano music, and performed favourably. Interestingly, rather than purely real-
-valued output, all of the above-mentioned sample-at-a-time methods made use of a quanti-
zed one-hot categorical softmax over an 8-bit μ-law encoding for estimating the real value of 
the audio signal. The intuition is that such an encoding allows to remove any prior assump-
tions about distribution and simply take the most probable discrete value.

As for frame-at-a-time methods, the baseline model from Engel (2017) is applicable, 
as it consists of a deep CNN trained on spectrograms. As mentioned, they used a large instru-
ment dataset and a large latent space of approximately 2000 dimensions to encode both the ti-
me and frequency domains. Indeed, this model can be thought of more as a spectrogram-at-a-
-time rather than frame-at-a-time, since the encoding takes multiple frames into account; the 
latent dimensions per frame were on the order of 16 and 32. The authors reported poor per-
formance for encoding phase or complex representations, and thus used only spectral mag-
nitude as input, and applied a phase reconstruction technique to synthesize the final audio.

In a work similar in motivation to the current one, Riera, Eguía and Zabaljáure-
gui (2017) used a sparse autoencoder to generate a set of descriptors according to the latent 
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space of the model. A multilayered network was used with a latent model of 8 dimensions, 
trained on all frames of a single recording. The sparse activation of the central bottleneck 
layer is visualized in time and interpreted as a “neural score”, and can be used to recons-
truct the original audio. A comparison of the clustering in the first three principle compo-
nents is provided to compare the resulting “timbre space” in terms of activations of the la-
tent layer with those of MFCC and spectral contrast descriptors, which are organized quali-
tatively differently; the former show a distinctly less “cloudy” shape compared to the latter, 
and instead distinct curved lines or trajectories are apparent. This is of course qualitatively 
open to interpretation, but does imply some kind of structure imposed on the latent space 
that appears to differ significantly from the use of non-learned descriptors. In this work, we 
found similar patterns in unregularized latent spaces, e.g. Figures 6a and 8a.

A distinguishing factor of this work compared to NSynth is that rather than at-
tempt to model a large set of instruments, which requires a large model, large dataset, and 
large-dimensional latent space (16 or 32) with unknown meaning, we focus on representing 
the sound with a comparatively small set of parameters (2 to 3) and attempt to learn a mi-
nimal encoding based on previous knowledge of the model parameters, adding latent di-
mensions only as necessary. This stems from a different motivation, which, instead of being 
to determine multi-instrument embedding spaces as in the case of NSynth, is to better un-
derstand the inverse data-parameter relationship, as well as to provide a small, salient set 
of “knobs” for real-time synthesis of a single family of timbres.

3. Datasets

Given a network with sufficient capacity we can encode any functional relationship, 
but for the experiments described herein a periodic signal specified by a small number of 
parameters was sought that nonetheless features some complexity and is related to sound 
synthesis. Thus, a physical modeling synthesizer proved a good choice. We used the bowed 
string model from the STK Synthesis Toolkit in C++ (COOK; SCAVONE, 1999), which uses 
digital waveguide synthesis and is controlled by 4 parameters: bow pressure, the force of 
the bow on the string; bow velocity, the velocity of the bow across the string; bow position, 
the distance of the string-bow intersection from the bridge; and frequency, which controls 
the length of the delay lines and filter parameters, and thus the tuning of the instrument.

The parameters are represented in STK as scalar values from 0 to 128, and thus we 
do not worry about physical units in this paper; all parameters were linearly scaled to a ran-
ge [–1,1] for input to the neural network. The data was similarly scaled for input, and a line-
ar descaling of the output is performed for the diagrams in this paper. Additionally, the per-
-element mean and standard deviations across the entire dataset were subtracted and divided 
respectively in order to ensure similar variance for each discrete step of the waveform period.

To extract the data, a program was written to evaluate the bowed string model at 
48000 Hz for 1 second for each combination of bow position and bow pressure for integers 
0 to 128. The 1-second interval was used to ensure the sound reached a steady state with 
a constant period size. The bow velocity and volume parameters were both held at a value 
of 100. For each instance, the last two periods of oscillation were kept, and since some pa-
rameter combinations did not give rise to stable oscillation, recordings with an RMS ou-
tput lower than 10-5 (in normalized units) over this span were rejected, giving a total of 
15731 recordings evenly distributed over the parameter range. The frequency was selected 
at 476.5 Hz to count 201 samples to capture two periods—some parameter combinations 
changed the tuning slightly, but inspection by eye of 50 periods concatenated end to end 
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showed minimal deviation at this frequency for a wide variety of parameters. Two periods 
were recorded in order to minimize the impact of any possible reproduction artifacts at the 
edges of the recording during overlap-add synthesis. The recordings were phase-aligned 
using a cross-correlation analysis with a representative random sample, then differentiated 
by first-order difference, and 200 sample-to-sample differences were thus used as the trai-
ning data, normalized as stated above. This dataset we refer to as bowed1.

Although it may be beneficial to use a log-spectrum representation rather than 
“raw” (pulse-coded) audio (ENGEL, 2017), we found that learning the time-domain oscilla-
tion cycle was no problem. In this manner we avoided the need to perform phase recons-
truction. The use of a differentiated representation also helped to suppress noise. As will be 
discussed below, parameter estimation on new data was not successful based on this data-
set due to the lack of representation of the synthesizer’s dynamic regimes. To resolve this, 
a second extended dataset, bowed2, was created in a similar manner, however instead of 
recording only the steady state portion, the synthesizer was executed continuously while 
changing the parameters randomly at random intervals. 100,000 samples uniformly cove-
ring the parameter range were captured for bowed2.

Finally, in order to test the idea on a completely independent albeit simple dataset, 
a human voice was recorded uttering constant vowel sounds. The voice (the author’s own 
voice) was held steady in frequency for a period of 3 seconds for vowels a, e, i, o, and u. The 
beginning and end of each utterance was clipped and periods were extracted and globally 
phase-aligned by aligning peaks. The voice was recorded at 44100 Hz and had a frequency 
between 114 and 117 Hz, thus slightly long cycles were extracted to have exactly 400.5 sam-
ples per period, so that two periods were 801 samples, or 800 samples in the differential re-
presentation used here. This created a final fundamental frequency of 110 Hz in the synthe-
sized sound. (Due to the shape of the overlap-add window, artifacts in 2 or 3 samples at the 
beginning and end of a cycle are mostly suppressed.) Integers 0 through 4 were assigned to 
each vowel and used as the single conditional parameter. This resulted in 996 two-period 
samples, or approximately 200 samples per vowel. As will be shown, since the voice was 
held quite steady, most periods for the same vowel were quite similar, however a low-qua-
lity microphone and natural vocal variation contributed to differences between samples. 
This dataset is referred to in this text as vowels.

In all cases, reproduction consists of de-normalizing, concatenating using an over-
lap-add method, and first-order integrating the final signal.  A 50% overlap-add with a Han-
ning window was used, which features a constant overlap summation thereby avoiding 
modulation artifacts (SMITH; SERRA, 1987).  The parameters are assumed constant during 
one window, and thus interpolation artifacts may begin to appear if the parameters chan-
ged quickly relative to two cycles of the waveform. In the ideal case, perfect reproduction of 
each cycle concatenated using this technique should reproduce the steady-state waveform 
of the original sound source. 

4. Training and network architecture

4.1. Learned conditional autoencoding

While the principle job of the autoencoder is to reproduce the input as exactly as 
possible, in this work we also wish to estimate the parameters used to generate the data. 
Thus we additionally condition part of the latent space by adding a loss related to the pa-
rameter reconstruction. This is somewhat different to providing conditional parameters to 
the input of the encoder (MAKHZANI, 2016; MIRZA, 2014), but has a similar effect. This is 
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to encourage the network to learn how to recognize the known parameters and assign as-
pects of the variance to them that is associated with those parameters.

Note that the presence of the latent parameters is what allows for the fact that we 
do not assume that the signal is purely deterministic in the known parameters. For instan-
ce, in a physical signal there maybe internal state variables that are not taken into account 
in the initial conditions, or acoustic characteristics such as room reverb that are not consi-
dered a priori. Naturally, the less deterministic the signal is in the known parameters, the 
more must be left to latent parameters, and the poorer a job we can expect the parameter 
reconstruction to do. Note that if the latent parameters are able to represent the dynamic re-
gimes, then dynamical state changes may be represented as trajectories in the latent space, 
however we did not try to reconstruct such trajectories in this work.

4.2. Generative adversarial regularization

The code used in the middle layer of an autoencoder, called the latent parameters, 
which we shall refer to as z, when trained to encode the data distribution p(x), has conditio-
nal posterior probability distribution q(z|x). As mentioned, it is in general useful to regula-
rize q(z|x) to match a desired distribution.

Several methods exist for this purpose: a variational autoencoder (VAE) uses the Kull-
back-Leibler divergence from a given prior distribution. Other measures of difference from a 
prior are possible. The use of an adversarial configuration has been proposed (MAKHZANI, 
2016) to regularize q(z) based on the negative log likelihood from a discriminator on z.

With adversarial regularization, a discriminator is used to judge whether a poste-
rior distribution q(z) was likely produced by the generator and is thus sampled from q(z|x), or 
rather sampled from an example distribution p(z), which is often set to a normal or uniform 
distribution. The discriminator is itself an ANN which outputs a 1 if z consists of a “real” 
sample of p(z) or a 0 for a “fake” sample of q(z|x). The training loss of the generator, which is 
also the encoder of the autoencoder, maximizes the probability of fooling the discrimina-
tor into thinking it is a real sample of p(z), while the discriminator simultaneously tries to 
increase its accuracy at distinguishing samples from p(z) and samples from q(z|x). Thus the 
encoder eventually generates posterior q(z|x) to be similar to p(z).

Figure 1: Variables and functions in the description of the adversarial autoencoder.
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4.3. Network description

Putting together the above concepts, the system is composed of two neural ne-
tworks and three training steps. A visual description of the network configuration and how 
it relates to the following variables and functions may be found in Figure 1.

First, the autoencoder network is composed of the encoder E = f(x) and the decoder/
generator G = g(z,y). The discriminator is designed analogously as D = h(z). For notational 
convenience, we also define GE = g(E) = g(f(x)), DE = h(EZ), and DZ = h(z) where x = x1 ... x3  are 
sampled from p(x), z = z1 ... z3 is sampled from p(z), and s is the batch size. EZ (x) and Ey (x) are 
the first n and the last m dimensions of E ∈ [z1 ... zny1 ... ym], respectively. In the current work, 
f(x) and g (z,y)are simple one-hidden-layer ANNs with one non-linearity ? and linear outputs:

We used the rectified linear unit ? (x) = max(0,x) (ReLU), but we also investigated 
the use of tanh non-linearities, described in Section 6.

The principal dataset, described below, was composed of 200-wide 1-D vectors, and 
we had acceptable results using hidden layers of half that size, so w1 ∈ R200x100, w2 ∈ R100x (n=m) 
and w3, w3, ∈ R1(n=m) x 100, w1, w3, ∈ R100x1, where (n + m), the total size of the hidden code, was 2 
or 3, depending on the experiment. The bias vectors b1 ... b3 had corresponding sizes accor-
dingly.

4.4. Training

 	 The training steps were performed in the following order for each batch:2

1.	 The Adam optimiser (KINGMA; BA, 2015) with a learning rate of 0.001 was 
used to train the full set of autoencoder weights w1 ... w4 , and b1 ... b2, minimi-
zing both the data x reconstruction loss and parameter y reconstruction loss, LLE 
by back-propagation. The weighting parameter l = 0.5 is described below.

2.	 Adam with learning rate 0.001 was used to train the generator weights and bia-
ses w1, w2, b1, and b2. The negative log-likelihood LG was minimized by back-
-propagation.

3.	 Adam with learning rate 0.001 was used to train the discriminator weights and 
biases w5, w6, b3 and b6. The negative log-likelihood LD was minimized by back-
-propagation. 

where,

Experiments were performed using the TensorFlow framework (ABADI, 2015), whi-
ch implemented the differentiation and gradient descent (back-propagation) algorithms. A 
small batch size of 50 was used, with each experiment evaluated after 4,000 batches. It was 
found that smaller batch sizes worked better for the adversarial configuration. Matrices z 
and x,y were sampled independently from z−p(z) = u(−1,1) and (x,y)−p(x,y) for each step, whe-
re u(a,b) is the uniform distribution in range [a,b] inclusive.
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5. Experiments

Six conditions were tested in order to explore the role of conditional and latent pa-
rameters. The number of known parameters in the dataset was 2. We tried training the bo-
wed1 dataset with and without an extra latent parameter. We label these conditions D122r 
and D022r respectively. The third condition, N122r, was like the D122r condition but without 
adversarial regularization on q(z|x). Thus the D label is to indicate the use of training on the 
discriminator, while N indicates No discriminator.

To compare conditioning with the “natural” distribution of the data among latent 
parameters and the effects of adversarial regularization thereupon, two configurations wi-
th no conditional parameters, with and without the discriminator, were explored, named 
D220r and N220r respectively.

(a)    (b) 
Figure 2: Output of D122r as pressure y0 and position y are changed. Top (red) is the decoder with parameters explicitly 

specified and zp  0; middle (green) is with parameters and zp inferred by the encoder, bottom (blue) is the dataset sample 
with closest parameters. (a) Time domain; (b) Frequency domain.

(a)    (b) 
Figure 3: Output of D122r as bow position is set to 100, and bow pressure and latent zp are changed. Top (red) decoder 

output; bottom (blue): is the dataset. (a) Time domain; (b) Frequency domain.
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6. Results

Figure 2 demonstrates the results of D122r. Comparing the middle and bottom cur-
ves, we can see that while it has some trouble with low values of bow pressure and the ex-
tremes of bow position, the autoencoder is able to more or less encode the distribution in 
our dataset. The top curve (red) was generated by explicitly specifying the y (conditional) 
parameters instead of letting the autoencoder infer them, with z0 = 0, and demonstrates the 
output for parameter-driven reconstruction if z0 is held constant. Although not a perfect re-
production, particularly at extremes of the bow position range where there is more variance, 
this demonstrates that the trained network is able to approximate the data-parameter rela-
tionship present in the dataset.

The role of z is now considered in Figure 3, by holding bow position constant (y1 = 
100) and examining how the signal changes with z0. One notices that for some values of z0 

the signal matches well, and for others it varies from the target signal. For example, we can 
see that in this case, high values of z0 push the signal towards two sharp peaks, while low 
values of z0 tend towards more oscillations; both z0 = −0.8 andz0 = 0.8 resemble the pr = 1152 
condition, but in different aspects. Meanwhile there is consistency with the “stylistic” in-
fluence of z0 on the signal for different values of bow pressure; for lack of better words, in 
the time domain it changes from “wiggly” to “peaky” going from left to right.

Figure 4: Parameter estimation performance of the D122r network for (a) bowed1 full dataset, RMS error=23.23; (b) 
bowed1 half dataset, RMS error=33.45; (c) bowed2 full dataset, RMS error=19.54; (d) bowed2 half dataset, RMS 

error=8.61.

Next, we look at the encoder (parameter estimator) performance, by producing a 
new signal from the STK synthesizer with a parameter trajectory starting with smooth va-
riation only in bow pressure and then smooth variation only in bow position, and then in 
both parameters. Figure 4(a) shows rather disappointing performance in this respect, howe-
ver it does clarify some information not present in the previous analysis: the estimation is 
clearly better for bow pressure, but easily disturbed by changes in bow position. Nonetheless 
we see the tendency of the estimate in the right direction, with rather a lot of flipping above 
and below the center. Since varying the hyperparameters of our network did not solve this 
problem, we hypothesized that this error could come from two sources: (1) ambiguities in 
the dataset—indeed, if one examines the shape of the signal as bow position changes, one 
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notices a symmetry between values on either side of pos = 64, c.f. samples from dataset in 
Figure 2, blue line. By consequence the inverse problem is underspecified, leading to ambi-
guity in the parameter estimate. (2) underrepresented variance in the dataset; the new tes-
ting data varies continuously in the parameters, but the dataset was constructed based on 
the per-parameter steady state.

To investigate this, the network was trained on a “half dataset”, consisting only of 
samples of bowed1 where bow position < 64. Furthermore, as mentioned, an extended data-
set, bowed2, was constructed based on random parameter variations. Results in Figure 4(b)-
-(d) show that training on the half-bowed1 dataset changed the character of errors, but did 
not improve overall, however the extended bowed2 dataset gave improved parameter esti-
mation, and much improved in the half-bowed2 case. Thus it can be concluded that both 
sources contributed to parameter estimation difficulties.

Figure 6 shows the resulting parameter space if both parameters are left to be ab-
sorbed by the unsupervised latent space. The adversarial regularization regime can be se-
en in the generator and discriminator losses of Fig. 6(b), which encourages the autoencoder 
to make the distribution of these variables similar to u(−1,1), i.e., a rectangle. This facilita-
tes user interaction with the generator, since limited-range control knobs can be mapped 
to this rectangle, thus having a strong chance to access the full range of variance present 
in the dataset; conversely, the chance of synthesizing a sound that does not correspond wi-
th the training data is minimized. Without regularization, Fig. 6(a) (N220r), we see some re-
lationship between the two inferred variables z0 and z1 (Fig. 6)—although it appears more 
complex than could be captured by a Pearson’s correlation—while this is completely gone 
for the regularized version (D220y). The spreading clusters are generated because without 
regularization, the autoencoder attempts to maximally separate various aspects of the va-
riance in a reduced 2-dimensional space in order to decrease uncertainty in reconstruction, 
which can be useful for data analysis but does not produce a good interpolation space. The 
regularization therefore encourages the parameter space to be interactively “interesting,” in 
the sense that the parameters represent orthogonal (or at least, uncorrelated) axes within 
the distribution that cover a defined domain (red square in Fig. 6) and tend towards uni-
form coverage without “holes”.

Of course, it is possible to restrict the domain without relying on the regularizer, 
simply by defining the network architecture accordingly. For instance, if the non-linear 
units are changed for the hyperbolic tangent, it is impossible for the network to generate va-
lues outside the range [−1,1]. In this sense the network architecture itself can be understood 
as contributing to regularization by enforcing hard constraints, rather than the soft cons-
traints of the cost function. In Fig. 8, this tanh architecture is demonstrated on the bowed1 
dataset, and it can be seen that the adversarial regularization nonetheless is still useful for 
ensuring that the domain is used effectively, i.e., despite some visual clusters still being 
apparent, they are much more spread out, better approximating a uniform distribution and, 
to a large degree, breaking up the piecewise correlations between the parameters that can 
be seen by inspection when regularization is not used. In general, we found the ReLU ap-
proach more stable and better at producing uniform coverage.
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Figure 5: The Sounderfeit graphical user interface allows to interact in real time with the ANN-synthesized sound and 

compare it to the physical model that it was trained on. Here, pressure and position are controlled by limited-range knobs 
on an MIDI keyboard (Novation).

One will undoubtedly notice that the reconstruction error as reported in Fig. 6 do-
es suffer due to the regularization. Indeed this is an expected outcome since the regulariza-
tion imposes extra requirements such that the training will sacrifice one criteria to impro-
ve another. Additionally, the error will depend greatly on how much variance is present in 
the data vs. how much “room” it needs to express it—in this sense, we would expect accu-
racy to increase as latent dimensions are added. Fig. 7 gives an idea of how reconstruction 
error changes as we do so.

We found that with this small decoder network of 100x3 weights and 100 biases, 
an overlap-add synthesis could be performed in real time on a laptop computer (10 seconds 
took 8.5 seconds to generate, and was much faster when re-implemented in C++), and we 
can thus present a real-time, interactive data-driven wavetable synthesizer, which we call 
Sounderfeit, see Figure 5, with a number of adjustable parameters.3 The output of the over-
lap-add process is visualized in Figure 10.

Lastly, in order to verify this method on another dataset, a similar network was 
trained on the vowels dataset, adjusted to have the right size of input layer of 800, see Figu-
re 9. The inferred space reflects the condition number (discrete, here), but the remaining 
parameter uniformly covers the range [‒1,1]. In this case the extra variance beyond the con-
ditional parameter consists only of small tonal changes in the recorded voice as well as mi-
crophone noise, and thus there is much more variance between vowels than within. It is 
apparent from Fig. 9(c) that there is no “leakage” of these extra sources of variance to the 
vowel label parameter axis, as the vowel number adequately identifies the cluster. The clus-
ters can therefore be nicely mapped to a desired space automatically by the conditioning 
and regularization.
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Figure 6: Distributions of latent parameters corresponding to a random sample of 3000 cycles from the dataset when trained 
(a) without regularization (N220Y) and (b) with adversarial regularization (D220Y).  The top rows indicate reconstruction error 
(E_loss, mean square error in normalized representation), and adversarial discrimination errors (G_loss=LG, D_loss=LD). 
Regularization encourages the network to find a latent space such that the full variance of the dataset can be accessed 
uniformly from a restricted range of values, indicated by the red dashed line, appropriate for interactive control.
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Figure 7: Reconstruction mean squared error as a function of the number of latent parameters, with and without regularization.

Figure 8: Results of same conditions as Fig. 6, but the ReLU activation functions are replaced with the hyperbolic tangent 
in order to restrict the domain of z instead of relying on the regularizer. It can be seen that when the network architecture 
provides domain limiting, the regularization still provides a benefit of better approximating a uniform distribution, and further 
decorrelating the parameters.

Figure 9: Results on vowels dataset: (a) using two latent parameters without regularization, the vowels are separated into 
clusters; (b) regularization encourages spreading to cover the uniform space within the desired boundaries, effectively 
smoothing out and blending the clusters; (c) replacing one latent parameter with conditioning on a vowel number 0 to 4.
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Conclusions

These experiments showed some modest success in copying the parameter-data re-
lationship of a physical modeling synthesizer and fitting them into a desired configuration. 
Like many machine learning approaches, the quality of results depends strongly on the 
hyperparameters used: network size and architecture, learning rates, regularization wei-
ghts, etc., and these must be adapted to the dataset. Shown here are results from the best pa-
rameters found after some combination of automatic and manual optimisation on this spe-
cific dataset, which we use to demonstrate some principles of the design, however it should 
be noted that actual results varied sometimes unexpectedly with small changes to these 
parameters. This hyperparameter optimization is non-trivial, especially when it comes to 
audio where mean squared error may not reveal much about the perceptual quality of the 
results, and so a lot of trial and error is the game. Thus, a truly “universal”, turn-key syn-
thesizer copier would require future work on measuring a combined hypercost that balan-
ces well the desire for good reproduction with good parameter estimation quality, and well-
-distributed latent parameters. Such work could go beyond mean squared error to involve 
perceptual models of sound perception. For example, recent work in speech synthesis has 
shown a significant improvement in perceived quality when the model was conditioned on 
mel frequency spectrograms (SHEN, 2017).

Some practical notes: (1) We found that getting the adversarial method to properly 
regularize the latent variables in the presence of conditional variables is somewhat tricky; 
the batch size and relative learning rates played a lot in balancing the generator and discri-
minator performances. New research in adversarial methods is a current area of investiga-
tion in the ML community and many new techniques could apply here; moreover compa-
rison with variational methods is needed – we note however that variational autoencoders 
are typically regularized to fit a Gaussian normal distribution, whereas an advantage of the 
adversarial approach is to fit any example-based distribution, which we took advantage of 
to fit the rectangle accessible by a pair of knobs. (2) We found the parameter estimation ex-
tremely sensitive to phase alignment; we tried randomizing phase of examples during trai-
ning, which gave better parameter estimates, but this was quite damaging to the autoenco-
der performance. In general oversensitivity to global phase is a problem with this method, 
a downside to the time domain representation; more work on dealing with phase as a latent 
parameter is necessary.

Figure 10: Overlap-add output of D1z2r, varying each parameter over a short interval.

Nevertheless we have attempted to outline some potential for the use of autoenco-
ders and their latent spaces for audio analysis and synthesis based on a specific signal sour-
ce. Only a very simple fully-connected single-layer architecture was used, and thus impro-
vements should be explored, in particular the addition of convolutional layers. The advan-
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tages of time- and frequency-domain representations as learning targets should be charac-
terised. More important than the quality of these specific results, we wish to point out the 
modular approach that autoencoders enable in modeling oscillator periods of known and 
unknown parameters, and that, in contrast to larger datasets covering many instruments 
(ENGEL, 2017), interesting insights and useful performance systems can be generated even 
from small data.

One might ask what a black box model brings to the table in the presence of an exis-
ting, semantically-rich physical model. Indeed, in this work a digital synthesizer was used 
as an easy way to gain access to a fairly complicated but clean signal with a small num-
ber of parameters. In principle this method could be used on much richer, real instrument 
recordings. To demonstrate this point we have trained it, as shown, on a very small vocal 
recording (3 seconds per vowel) and produced a working vowel synthesizer with separate 
knobs for vowel number and “noise”, e.g. microphone noise and vocal variance, however 
more complete experiments are needed in this vein. A challenge in operating on real data 
was cutting and aligning oscillation cycles correctly, which was non-trivial and prohibits 
easier experimentation on arbitrary data streams.

Simultaneous estimation and generation with the same network may be unneces-
sary. In fact the conditioning variables could be made external inputs instead of inferred 
from the input data, and the decoder could be used separately to only learn the parameters 
in a more typical regression configuration. However, one of the longer-term goals of perfor-
ming automatic inference is play somewhat with the latent and parameter space, such as 
using it for what is known in the audio community as cross-synthesis, or in the machine le-
arning community as “style transfer”, i.e., swapping the bottom and top halves of two such 
autoencoder networks, allowing to drive a synthesizer by both conditioned and latent pa-
rameters estimated on an incoming signal. One can imagine, for example, playing the vio-
lin and having the bow pressure control the brightness of a wind instrument sound, while 
more subtle aspects of the gesture are left to latent space to control more subtle parameters 
of the sound. To achieve this a much less noisy inference result would be necessary, and 
is of course predicated on the idea that the parameter to data function is invertible, which, 
as seen in our failure to map the complete bow position domain, is not necessarily a given. 
Another reason for doing simultaneous estimation and generation left for future work is to 
investigate whether a tied-weights approach might improve both goals by integrating mutu-
al sources of information on either side of the equation.

Note

1	 Audio examples at: <https://emac.ufg.br/up/269/o/Sinclair_soundexample.mp3>.
2	 The learning rates have been changed from Sinclair (2017): stochastic gradient descent with learning rate 0.005 

for the autoencoder and learning rate 0.05 for the generator and discriminator. Due to a programming error, the 
autoencoder training step performed better with a different learning rate. We later found that the results were mu-
ch more robust with the Adam optimiser and the same learning rate value for all training steps.

3	 Sounderfeit source code can be found on its project page at https://gitlab.com/sinclairs/sounderfeit
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